Olalekan Olatunde Fadebi, Thabiso Victor Miya, Richard Khanyile, Zodwa Dlamini, Rahaba Marima
{"title":"Long Intergenic Non-Coding RNAs and <i>BRCA1</i> in Breast Cancer Pathogenesis: Neighboring Companions or Nemeses?","authors":"Olalekan Olatunde Fadebi, Thabiso Victor Miya, Richard Khanyile, Zodwa Dlamini, Rahaba Marima","doi":"10.3390/ncrna11010009","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the leading causes of mortality among women, primarily due to its complex molecular landscape and heterogeneous nature. The tendency of breast cancer patients to develop metastases poses significant challenges in clinical management. Notably, mutations in the breast cancer gene 1 (<i>BRCA1</i>) significantly elevate breast cancer risk. The current research endeavors employ diverse molecular approaches, including RNA, DNA, and protein studies, to explore avenues for the early diagnosis and treatment of breast cancer. Recent attention has shifted towards long non-coding RNAs (lncRNAs) as promising diagnostic, prognostic, and therapeutic targets in the multifaceted progression of breast cancer. Among these, long intergenic non-coding RNAs (lincRNAs), a specific class of lncRNAs, play critical roles in regulating various aspects of tumorigenesis, including cell proliferation, apoptosis, epigenetic modulation, tumor invasion, and metastasis. Their distinctive expression patterns in cellular and tissue contexts underscore their importance in breast cancer development and progression. Harnessing lincRNAs' sensitivity and precision as diagnostic, therapeutic, and prognostic markers holds significant promise for the clinical management of breast cancer. However, the potential of lincRNAs remains relatively underexplored, particularly in the context of <i>BRCA1</i>-mutated breast cancer and other clinicopathological parameters such as receptor status and patient survival. Consequently, there is an urgent need for comprehensive investigations into novel diagnostic and prognostic breast cancer biomarkers. This review examines the roles of lincRNAs associated with <i>BRCA1</i> in the landscape of breast cancer, highlighting the potential avenues for future research and clinical applications.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is one of the leading causes of mortality among women, primarily due to its complex molecular landscape and heterogeneous nature. The tendency of breast cancer patients to develop metastases poses significant challenges in clinical management. Notably, mutations in the breast cancer gene 1 (BRCA1) significantly elevate breast cancer risk. The current research endeavors employ diverse molecular approaches, including RNA, DNA, and protein studies, to explore avenues for the early diagnosis and treatment of breast cancer. Recent attention has shifted towards long non-coding RNAs (lncRNAs) as promising diagnostic, prognostic, and therapeutic targets in the multifaceted progression of breast cancer. Among these, long intergenic non-coding RNAs (lincRNAs), a specific class of lncRNAs, play critical roles in regulating various aspects of tumorigenesis, including cell proliferation, apoptosis, epigenetic modulation, tumor invasion, and metastasis. Their distinctive expression patterns in cellular and tissue contexts underscore their importance in breast cancer development and progression. Harnessing lincRNAs' sensitivity and precision as diagnostic, therapeutic, and prognostic markers holds significant promise for the clinical management of breast cancer. However, the potential of lincRNAs remains relatively underexplored, particularly in the context of BRCA1-mutated breast cancer and other clinicopathological parameters such as receptor status and patient survival. Consequently, there is an urgent need for comprehensive investigations into novel diagnostic and prognostic breast cancer biomarkers. This review examines the roles of lincRNAs associated with BRCA1 in the landscape of breast cancer, highlighting the potential avenues for future research and clinical applications.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.