{"title":"Differential Expression of miRNAs Between Young-Onset and Late-Onset Indian Colorectal Carcinoma Patients.","authors":"Sumaiya Moiz, Barsha Saha, Varsha Mondal, Debarati Bishnu, Biswajit Das, Bodhisattva Bose, Soumen Das, Nirmalya Banerjee, Amitava Dutta, Krishti Chatterjee, Srikanta Goswami, Soma Mukhopadhyay, Sudarshana Basu","doi":"10.3390/ncrna11010010","DOIUrl":null,"url":null,"abstract":"<p><p>Reports indicate a worldwide increase in the incidence of Early-Onset Colorectal Carcinoma (EOCRC) (<50 years old). In an effort to understand the different modes of pathogenesis in early-onset CRC, colorectal tumors from EOCRC (<50 years old) and Late-Onset patients (LOCRC; >50 years old) were screened to eliminate microsatellite instability (MSI), nuclear β-catenin, and <i>APC</i> mutations, as these are known canonical factors in CRC pathogenesis. Small-RNA sequencing followed by comparative analysis revealed differential expression of 23 miRNAs (microRNAs) specific to EOCRC and 11 miRNAs specific to LOCRC. We validated the top 10 EOCRC DEMs in TCGA-COAD and TCGA-READ cohorts, followed by validation in additional EOCRC and LOCRC cohorts. Our integrated analysis revealed upregulation of hsa-miR-1247-3p and hsa-miR-148a-3p and downregulation of hsa-miR-326 between the two subsets. Experimentally validated targets of the above miRNAs were compared with differentially expressed genes in the TCGA dataset to identify targets with physiological significance in EOCRC development. Our analysis revealed metabolic reprogramming, downregulation of anoikis-regulating pathways, and changes in tissue morphogenesis, potentially leading to anchorage-independent growth and progression of epithelial-mesenchymal transition (EMT). Upregulated targets include proteins present in the basal part of intestinal epithelial cells and genes whose expression is known to correlate with invasion and poor prognosis.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reports indicate a worldwide increase in the incidence of Early-Onset Colorectal Carcinoma (EOCRC) (<50 years old). In an effort to understand the different modes of pathogenesis in early-onset CRC, colorectal tumors from EOCRC (<50 years old) and Late-Onset patients (LOCRC; >50 years old) were screened to eliminate microsatellite instability (MSI), nuclear β-catenin, and APC mutations, as these are known canonical factors in CRC pathogenesis. Small-RNA sequencing followed by comparative analysis revealed differential expression of 23 miRNAs (microRNAs) specific to EOCRC and 11 miRNAs specific to LOCRC. We validated the top 10 EOCRC DEMs in TCGA-COAD and TCGA-READ cohorts, followed by validation in additional EOCRC and LOCRC cohorts. Our integrated analysis revealed upregulation of hsa-miR-1247-3p and hsa-miR-148a-3p and downregulation of hsa-miR-326 between the two subsets. Experimentally validated targets of the above miRNAs were compared with differentially expressed genes in the TCGA dataset to identify targets with physiological significance in EOCRC development. Our analysis revealed metabolic reprogramming, downregulation of anoikis-regulating pathways, and changes in tissue morphogenesis, potentially leading to anchorage-independent growth and progression of epithelial-mesenchymal transition (EMT). Upregulated targets include proteins present in the basal part of intestinal epithelial cells and genes whose expression is known to correlate with invasion and poor prognosis.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.