{"title":"Review of Biomass-Derived Carbon Nanomaterials-From 0D to 3D-For Supercapacitor Applications.","authors":"Yihong Yan, Weiqiang Sun, Yuxin Wei, Kuankuan Liu, Jingjing Ma, Guang Hu","doi":"10.3390/nano15040315","DOIUrl":null,"url":null,"abstract":"<p><p>The transition to sustainable energy storage solutions has driven significant interest in supercapacitors, which offer high power density, rapid charge-discharge capabilities, and exceptional cycle stability. Biomass-derived carbon nanomaterials have emerged as compelling candidates for supercapacitor electrodes due to their renewable origins, environmental compatibility, and cost-effectiveness. This study explores recent advancements in tailoring structural properties, for example in preparation methods and activation, which are essential for efficient charge storage and rapid ion transport. Attention is given to the dimensional configurations-spanning 0D to 3D structures-and their impact on electrochemical behaviors. This review outlines the challenges faced in scaling up and optimizing these materials for practical applications, alongside an outlook on future research directions. By bridging the gap between material design and application demands, this work contributes to advancing sustainable supercapacitor technologies for a greener energy future.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15040315","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transition to sustainable energy storage solutions has driven significant interest in supercapacitors, which offer high power density, rapid charge-discharge capabilities, and exceptional cycle stability. Biomass-derived carbon nanomaterials have emerged as compelling candidates for supercapacitor electrodes due to their renewable origins, environmental compatibility, and cost-effectiveness. This study explores recent advancements in tailoring structural properties, for example in preparation methods and activation, which are essential for efficient charge storage and rapid ion transport. Attention is given to the dimensional configurations-spanning 0D to 3D structures-and their impact on electrochemical behaviors. This review outlines the challenges faced in scaling up and optimizing these materials for practical applications, alongside an outlook on future research directions. By bridging the gap between material design and application demands, this work contributes to advancing sustainable supercapacitor technologies for a greener energy future.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.