Vaccine Development T-cell (MHC-I) Epitopes Identification Against the Indian HCV Genotype: An Approach Based on Immunoinformatic.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sridevi Iyyanar, Sai Nandhini Ravi
{"title":"Vaccine Development T-cell (MHC-I) Epitopes Identification Against the Indian HCV Genotype: An Approach Based on Immunoinformatic.","authors":"Sridevi Iyyanar, Sai Nandhini Ravi","doi":"10.1007/s12033-025-01398-5","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis C virus (HCV) infects approximately 58 million individuals worldwide, often progressing to chronic liver disease, cirrhosis, and hepatocellular carcinoma. The viral envelope glycoproteins E1 and E2 are critical for HCV entry and serve as primary targets for neutralizing antibodies. Recent advancements in cryo-electron tomography have provided high-resolution structures (3.5 Å) of the E1E2 heterodimer, revealing interactions between the E1 and E2 ectodomains, as well as neutralizing antibody complexes (e.g., AR4A, AT1209, IGH505). This structural information facilitates the design of a synthetic peptide vaccine targeting conserved E1 and E2 regions. We suggest developing a vaccine tailored to the HLA-A*24:02 allele, the most prevalent in the Indian population. Epitope candidates will be screened using immunoinformatics tools, incorporating epitopes derived from epitope mapping with 7t6x protein structure modeling. Molecular docking studies will identify high-affinity interactions with human MHC-Class I alleles, using tools such as AutoDock and HADDOCK. GROMACS molecular dynamics simulations will assess peptide-HLA binding stability and dynamics. Among ten screened epitopes, KWEYVVLLF and QWQVLPCSF emerged as the most promising based on their toxicity profiles, conservation, and docking scores with HLA-A*24:02 (- 9.3 kcal/mol for KWEYVVLLF and - 225.34 kcal/mol for QWQVLPCSF). Molecular dynamics simulations indicated that the KWEY segment of KWEYVVLLF underwent structural changes, while the VVLLF region maintained stable binding to Chain A, suggesting immunogenic potential. These epitopes represent strong candidates for T-cell-based vaccines, and the reverse vaccinology approach, supported by computational tools, offers a population-specific strategy for HCV vaccine development, advancing precision immunotherapy.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01398-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatitis C virus (HCV) infects approximately 58 million individuals worldwide, often progressing to chronic liver disease, cirrhosis, and hepatocellular carcinoma. The viral envelope glycoproteins E1 and E2 are critical for HCV entry and serve as primary targets for neutralizing antibodies. Recent advancements in cryo-electron tomography have provided high-resolution structures (3.5 Å) of the E1E2 heterodimer, revealing interactions between the E1 and E2 ectodomains, as well as neutralizing antibody complexes (e.g., AR4A, AT1209, IGH505). This structural information facilitates the design of a synthetic peptide vaccine targeting conserved E1 and E2 regions. We suggest developing a vaccine tailored to the HLA-A*24:02 allele, the most prevalent in the Indian population. Epitope candidates will be screened using immunoinformatics tools, incorporating epitopes derived from epitope mapping with 7t6x protein structure modeling. Molecular docking studies will identify high-affinity interactions with human MHC-Class I alleles, using tools such as AutoDock and HADDOCK. GROMACS molecular dynamics simulations will assess peptide-HLA binding stability and dynamics. Among ten screened epitopes, KWEYVVLLF and QWQVLPCSF emerged as the most promising based on their toxicity profiles, conservation, and docking scores with HLA-A*24:02 (- 9.3 kcal/mol for KWEYVVLLF and - 225.34 kcal/mol for QWQVLPCSF). Molecular dynamics simulations indicated that the KWEY segment of KWEYVVLLF underwent structural changes, while the VVLLF region maintained stable binding to Chain A, suggesting immunogenic potential. These epitopes represent strong candidates for T-cell-based vaccines, and the reverse vaccinology approach, supported by computational tools, offers a population-specific strategy for HCV vaccine development, advancing precision immunotherapy.

针对印度HCV基因型的疫苗开发t细胞(MHC-I)表位鉴定:基于免疫信息学的方法
全球约有5800万人感染丙型肝炎病毒(HCV),通常进展为慢性肝病、肝硬化和肝细胞癌。病毒包膜糖蛋白E1和E2是HCV进入的关键,是中和抗体的主要靶点。冷冻电子断层扫描的最新进展提供了E1E2异源二聚体的高分辨率结构(3.5 Å),揭示了E1和E2外结构域之间的相互作用,以及中和抗体复合物(例如,AR4A, AT1209, IGH505)。这种结构信息有助于设计针对保守的E1和E2区域的合成肽疫苗。我们建议开发一种针对HLA-A*24:02等位基因的疫苗,这种等位基因在印度人群中最为普遍。候选表位将使用免疫信息学工具筛选,结合表位定位和7t6x蛋白结构建模得出的表位。分子对接研究将使用AutoDock和HADDOCK等工具确定与人类mhc - I类等位基因的高亲和相互作用。GROMACS分子动力学模拟将评估肽- hla结合的稳定性和动力学。在筛选到的10个表位中,KWEYVVLLF和QWQVLPCSF的毒性谱、保守性和与HLA-A*24:02的对接评分(KWEYVVLLF为- 9.3 kcal/mol, QWQVLPCSF为- 225.34 kcal/mol)显示出最有希望。分子动力学模拟表明,KWEYVVLLF的KWEY片段发生了结构变化,而VVLLF区域与A链的结合保持稳定,具有免疫原性。这些表位代表了基于t细胞的疫苗的强有力候选,而反向疫苗学方法在计算工具的支持下,为HCV疫苗开发提供了一种针对人群的策略,促进了精确的免疫治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信