Application of Indirect ELISA and PCR Techniques for Detecting of Hepatocellular Carcinoma using Des-gamma Carboxyprothrombin, Alpha-fetoprotein, and Thioredoxin Biomarkers.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Duong Quang Huy, Nguyen Xuan Khai, Tran Hong Thinh, Bui Thuy Linh, Nghiem Ngoc Minh, Vo Thi Bich Thuy
{"title":"Application of Indirect ELISA and PCR Techniques for Detecting of Hepatocellular Carcinoma using Des-gamma Carboxyprothrombin, Alpha-fetoprotein, and Thioredoxin Biomarkers.","authors":"Duong Quang Huy, Nguyen Xuan Khai, Tran Hong Thinh, Bui Thuy Linh, Nghiem Ngoc Minh, Vo Thi Bich Thuy","doi":"10.1007/s12033-025-01401-z","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the five most common cancers and the second leading cause of cancer-related death worldwide. In this study, three monoclonal antibodies were developed for the early detection of HCC. The enzyme-linked immunosorbent assay (ELISA) method is used to detect antigens causing HCC. The final working dilutions of the coated antigen, monoclonal antibody, and enzyme-labeled secondary antibody were determined to be 1:5, 1:100, and 1:15,000, respectively. The optimal dilution of blocking buffer was 1.5% BSA phosphate buffer. The cutoff values were determined to be 0.1989, 0.2539, and 0.3059 for the Des-gamma carboxyprothrombin (DCP), Alpha-fetoprotein (AFP) and Thioredoxin (TXN) antigens, respectively. There is no cross-reaction between antigens and antibodies of different types. The coincidence rates between the indirect ELISA and commercial kits for detecting DCP, AFP, and TXN antigens were 95.24%, 95.24%, and 96.83%, respectively. In addition, a procedure to detect genes encoding TXN, DCP, and AFP via PCR has been developed. The results of the indirect ELISA and PCR methods are similar. In summary, we successfully constructed an indirect ELISA method to detect HCC-causing antigens via three monoclonal antibodies and designed primers to amplify HCC-causing gene fragments, which can be used for diagnosis and screening in clinical medicine.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01401-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is one of the five most common cancers and the second leading cause of cancer-related death worldwide. In this study, three monoclonal antibodies were developed for the early detection of HCC. The enzyme-linked immunosorbent assay (ELISA) method is used to detect antigens causing HCC. The final working dilutions of the coated antigen, monoclonal antibody, and enzyme-labeled secondary antibody were determined to be 1:5, 1:100, and 1:15,000, respectively. The optimal dilution of blocking buffer was 1.5% BSA phosphate buffer. The cutoff values were determined to be 0.1989, 0.2539, and 0.3059 for the Des-gamma carboxyprothrombin (DCP), Alpha-fetoprotein (AFP) and Thioredoxin (TXN) antigens, respectively. There is no cross-reaction between antigens and antibodies of different types. The coincidence rates between the indirect ELISA and commercial kits for detecting DCP, AFP, and TXN antigens were 95.24%, 95.24%, and 96.83%, respectively. In addition, a procedure to detect genes encoding TXN, DCP, and AFP via PCR has been developed. The results of the indirect ELISA and PCR methods are similar. In summary, we successfully constructed an indirect ELISA method to detect HCC-causing antigens via three monoclonal antibodies and designed primers to amplify HCC-causing gene fragments, which can be used for diagnosis and screening in clinical medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信