Grzegorz Matyszczak, Krzysztof Krawczyk, Albert Yedzikhanau
{"title":"Computational Modeling of Properties of Quantum Dots and Nanostructures: From First Principles to Artificial Intelligence (A Review).","authors":"Grzegorz Matyszczak, Krzysztof Krawczyk, Albert Yedzikhanau","doi":"10.3390/nano15040272","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials, including quantum dots, have gained more and more attention in the past few decades due to their extraordinary properties that make them useful for many applications, ranging from catalysis, energy generation and storage, biotechnology, and medicine to quantum informatics. Mathematical descriptions of the phenomena in which nanostructures are involved are of great demand because they may be utilized for the purpose of controlling these phenomena (e.g., the growth of nanostructures with certain sizes, shapes, and other properties). Such models may be of distinct nature, including calculations from first principles, ordinary and partial differential equations, and machine learning models (including artificial intelligence) as well. The aim of this article is to review the most important and useful computational and mathematical approaches for the description and control of processes involving nanostructures.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15040272","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials, including quantum dots, have gained more and more attention in the past few decades due to their extraordinary properties that make them useful for many applications, ranging from catalysis, energy generation and storage, biotechnology, and medicine to quantum informatics. Mathematical descriptions of the phenomena in which nanostructures are involved are of great demand because they may be utilized for the purpose of controlling these phenomena (e.g., the growth of nanostructures with certain sizes, shapes, and other properties). Such models may be of distinct nature, including calculations from first principles, ordinary and partial differential equations, and machine learning models (including artificial intelligence) as well. The aim of this article is to review the most important and useful computational and mathematical approaches for the description and control of processes involving nanostructures.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.