Tattoo Ink Metal Nanoparticles: Assessment of Toxicity In Vitro and with a Novel Human Ex Vivo Model.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-02-11 DOI:10.3390/nano15040270
Beatrice Battistini, Daniela Lulli, Beatrice Bocca, Maria Luigia Carbone, Carmela Ramondino, Stefano Caimi, Alessio Capone, Ezio Maria Nicodemi, Elena Dellambra, Isabella De Angelis, Cristina Maria Failla
{"title":"Tattoo Ink Metal Nanoparticles: Assessment of Toxicity In Vitro and with a Novel Human Ex Vivo Model.","authors":"Beatrice Battistini, Daniela Lulli, Beatrice Bocca, Maria Luigia Carbone, Carmela Ramondino, Stefano Caimi, Alessio Capone, Ezio Maria Nicodemi, Elena Dellambra, Isabella De Angelis, Cristina Maria Failla","doi":"10.3390/nano15040270","DOIUrl":null,"url":null,"abstract":"<p><p>Tattoo inks contain varying amounts of metal nanoparticles (NPs) < 100 nm that, due to their unique physicochemical properties, may have specific biological uptake and cause skin or systemic toxicities. The toxic effects of certified reference standards of metal NPs and samples of commercially available tattoo inks were investigated using an in vitro system and a novel human ex vivo model. In vitro toxicity was evaluated using vitality assays on human skin cells (HaCaT cell line, primary fibroblasts, and keratinocytes). No toxicity was observed for Al<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub> NPs, whereas CuO NPs showed dose-dependent toxicity on HaCaT and primary fibroblasts. Fibroblasts and keratinocytes were also sensitive to high concentrations of ZnO NPs. Reference standards and ink samples were then injected ex vivo into human skin explants using tattoo needles. Histological analysis showed pigment distribution deep in the dermis and close to dermal vessels, suggesting possible systemic diffusion. The presence of an inflammatory infiltrate was also observed. Immunohistochemical analysis showed increased apoptosis and expression of the inflammatory cytokine interleukin-8 in explants specifically tattooed with the reference standard or red ink. Taken together, the results suggest that the tattooing technique leads to exposure to toxic metal NPs and skin damage.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15040270","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tattoo inks contain varying amounts of metal nanoparticles (NPs) < 100 nm that, due to their unique physicochemical properties, may have specific biological uptake and cause skin or systemic toxicities. The toxic effects of certified reference standards of metal NPs and samples of commercially available tattoo inks were investigated using an in vitro system and a novel human ex vivo model. In vitro toxicity was evaluated using vitality assays on human skin cells (HaCaT cell line, primary fibroblasts, and keratinocytes). No toxicity was observed for Al2O3, Cr2O3, Fe2O3, and TiO2 NPs, whereas CuO NPs showed dose-dependent toxicity on HaCaT and primary fibroblasts. Fibroblasts and keratinocytes were also sensitive to high concentrations of ZnO NPs. Reference standards and ink samples were then injected ex vivo into human skin explants using tattoo needles. Histological analysis showed pigment distribution deep in the dermis and close to dermal vessels, suggesting possible systemic diffusion. The presence of an inflammatory infiltrate was also observed. Immunohistochemical analysis showed increased apoptosis and expression of the inflammatory cytokine interleukin-8 in explants specifically tattooed with the reference standard or red ink. Taken together, the results suggest that the tattooing technique leads to exposure to toxic metal NPs and skin damage.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信