Matrix Linear Models for Connecting Metabolite Composition to Individual Characteristics.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2025-02-19 DOI:10.3390/metabo15020140
Gregory Farage, Chenhao Zhao, Hyo Young Choi, Timothy J Garrett, Marshall B Elam, Katerina Kechris, Śaunak Sen
{"title":"Matrix Linear Models for Connecting Metabolite Composition to Individual Characteristics.","authors":"Gregory Farage, Chenhao Zhao, Hyo Young Choi, Timothy J Garrett, Marshall B Elam, Katerina Kechris, Śaunak Sen","doi":"10.3390/metabo15020140","DOIUrl":null,"url":null,"abstract":"<p><p><i><b>Background/Objectives:</b></i> High-throughput metabolomics data provide a detailed molecular window into biological processes. We consider the problem of assessing how association of metabolite levels with individual (sample) characteristics, such as sex or treatment, depend on metabolite characteristics such as pathways. Typically, this is done using a two-step process. In the first step, we assess the association of each metabolite with individual characteristics. In the second step, an enrichment analysis is performed by metabolite characteristics. <i><b>Methods:</b></i> We combine the two steps using a bilinear model based on the matrix linear model (MLM) framework previously developed for high-throughput genetic screens. Our method can estimate relationships in metabolites sharing known characteristics, whether categorical (such as type of lipid or pathway) or numerical (such as number of double bonds in triglycerides). <i><b>Results:</b></i> We demonstrate the flexibility and interoperability of MLMs by applying them to three metabolomic studies. We show that our approach can separate the contribution of the overlapping triglyceride characteristics, such as the number of double bonds and the number of carbon atoms. <i><b>Conclusion:</b></i> The matrix linear model offers a flexible, efficient, and interpretable framework for integrating external information and examining complex relationships in metabolomics data. Our method has been implemented in the open-source Julia package, MatrixLM. Data analysis scripts with example data analyses are also available.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15020140","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: High-throughput metabolomics data provide a detailed molecular window into biological processes. We consider the problem of assessing how association of metabolite levels with individual (sample) characteristics, such as sex or treatment, depend on metabolite characteristics such as pathways. Typically, this is done using a two-step process. In the first step, we assess the association of each metabolite with individual characteristics. In the second step, an enrichment analysis is performed by metabolite characteristics. Methods: We combine the two steps using a bilinear model based on the matrix linear model (MLM) framework previously developed for high-throughput genetic screens. Our method can estimate relationships in metabolites sharing known characteristics, whether categorical (such as type of lipid or pathway) or numerical (such as number of double bonds in triglycerides). Results: We demonstrate the flexibility and interoperability of MLMs by applying them to three metabolomic studies. We show that our approach can separate the contribution of the overlapping triglyceride characteristics, such as the number of double bonds and the number of carbon atoms. Conclusion: The matrix linear model offers a flexible, efficient, and interpretable framework for integrating external information and examining complex relationships in metabolomics data. Our method has been implemented in the open-source Julia package, MatrixLM. Data analysis scripts with example data analyses are also available.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信