Circular Vectors as an efficient, fully synthetic, cell-free approach for preparing small circular DNA as a plasmid substitute for guide RNA expression in CRISPR-Cas9 genome editing.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Roman Teo Oliynyk, George M Church
{"title":"Circular Vectors as an efficient, fully synthetic, cell-free approach for preparing small circular DNA as a plasmid substitute for guide RNA expression in CRISPR-Cas9 genome editing.","authors":"Roman Teo Oliynyk, George M Church","doi":"10.1038/s41596-024-01138-0","DOIUrl":null,"url":null,"abstract":"<p><p>Robust expression of guide RNA (gRNA) is essential for successful implementation of CRISPR-Cas9 genome-editing methods. The gRNA components, such as an RNA polymerase promoter followed by the gRNA coding sequence and an RNA polymerase terminator sequence, and the Cas9 protein are expressed either via an all-in-one plasmid or separate dedicated plasmids. The preparation of such plasmids involves a laborious multi-day process of DNA assembly, bacterial cloning, validation, purification and sequencing. Our Circular Vector (CV) protocol introduces an efficient, fully synthetic, cell-free approach for preparing gRNA expression templates suitable for transfection, marking a significant advancement over traditional plasmid-based approaches. This protocol consists of the circularization and purification of linear double-stranded DNA (dsDNA) containing gRNA expression elements into compact, bacterial-backbone-free circular DNA expression vectors in as little as 3 h. We provide a guide to the design of the dsDNA template coding for gRNA elements for CRISPR-Cas9 base and prime editing, along with step-by-step instructions for the efficient preparation of gRNA-expressing CVs. In addition to rapid preparation, CVs created via this protocol offer several key advantages: a compact size, absence of a bacterial backbone, absence of bacterial endotoxins and no contamination by bacterial RNA or DNA fragments. These features make gRNA-expressing CVs a superior choice over plasmid-based gRNA expression templates.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01138-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Robust expression of guide RNA (gRNA) is essential for successful implementation of CRISPR-Cas9 genome-editing methods. The gRNA components, such as an RNA polymerase promoter followed by the gRNA coding sequence and an RNA polymerase terminator sequence, and the Cas9 protein are expressed either via an all-in-one plasmid or separate dedicated plasmids. The preparation of such plasmids involves a laborious multi-day process of DNA assembly, bacterial cloning, validation, purification and sequencing. Our Circular Vector (CV) protocol introduces an efficient, fully synthetic, cell-free approach for preparing gRNA expression templates suitable for transfection, marking a significant advancement over traditional plasmid-based approaches. This protocol consists of the circularization and purification of linear double-stranded DNA (dsDNA) containing gRNA expression elements into compact, bacterial-backbone-free circular DNA expression vectors in as little as 3 h. We provide a guide to the design of the dsDNA template coding for gRNA elements for CRISPR-Cas9 base and prime editing, along with step-by-step instructions for the efficient preparation of gRNA-expressing CVs. In addition to rapid preparation, CVs created via this protocol offer several key advantages: a compact size, absence of a bacterial backbone, absence of bacterial endotoxins and no contamination by bacterial RNA or DNA fragments. These features make gRNA-expressing CVs a superior choice over plasmid-based gRNA expression templates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信