Helene Rehberger, Mohammad Rezaei, Abdalaziz Aljabour
{"title":"Challenges and Opportunities of Choosing a Membrane for Electrochemical CO<sub>2</sub> Reduction.","authors":"Helene Rehberger, Mohammad Rezaei, Abdalaziz Aljabour","doi":"10.3390/membranes15020055","DOIUrl":null,"url":null,"abstract":"<p><p>The urgent need to reduce greenhouse gas emissions, particularly carbon dioxide (CO<sub>2</sub>), has led to intensive research into novel techniques for synthesizing valuable chemicals that address climate change. One technique that is becoming increasingly important is the electrochemical reduction of CO<sub>2</sub> to produce carbon monoxide (CO), an important feedstock for various industrial processes. This comprehensive review examines the latest developments in CO<sub>2</sub> electroreduction, focusing on mechanisms, catalysts, reaction pathways, and optimization strategies to enhance CO production efficiency. A particular emphasis is placed on the role of ion exchange membranes, including cation exchange membranes (CEMs), anion exchange membranes (AEMs), and bipolar membranes (BPMs). The review explores their advantages, disadvantages, and the current challenges associated with their implementation in CO<sub>2</sub> electroreduction systems. Through careful analysis of the current literature, this report aims to provide a comprehensive understanding of state-of-the-art methods and their potential impact on sustainable CO production, with a special focus on membrane technologies.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15020055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The urgent need to reduce greenhouse gas emissions, particularly carbon dioxide (CO2), has led to intensive research into novel techniques for synthesizing valuable chemicals that address climate change. One technique that is becoming increasingly important is the electrochemical reduction of CO2 to produce carbon monoxide (CO), an important feedstock for various industrial processes. This comprehensive review examines the latest developments in CO2 electroreduction, focusing on mechanisms, catalysts, reaction pathways, and optimization strategies to enhance CO production efficiency. A particular emphasis is placed on the role of ion exchange membranes, including cation exchange membranes (CEMs), anion exchange membranes (AEMs), and bipolar membranes (BPMs). The review explores their advantages, disadvantages, and the current challenges associated with their implementation in CO2 electroreduction systems. Through careful analysis of the current literature, this report aims to provide a comprehensive understanding of state-of-the-art methods and their potential impact on sustainable CO production, with a special focus on membrane technologies.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.