Application of Membrane Capacitive Deionization as Pretreatment Strategy for Enhancing Salinity Gradient Power Generation.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Seoyeon Lee, Juyoung Lee, Jaehyun Ju, Hyeongrak Cho, Yongjun Choi, Sangho Lee
{"title":"Application of Membrane Capacitive Deionization as Pretreatment Strategy for Enhancing Salinity Gradient Power Generation.","authors":"Seoyeon Lee, Juyoung Lee, Jaehyun Ju, Hyeongrak Cho, Yongjun Choi, Sangho Lee","doi":"10.3390/membranes15020056","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity gradient power (SGP) technologies, including pressure-retarded osmosis (PRO) and reverse electrodialysis (RED), have the potential to be utilized for the purpose of harvesting energy from the difference in salinity between two water streams. One challenge associated with SGP is a reduction in power density due to membrane fouling when impaired water is utilized as a low-salinity water stream. Accordingly, this study sought to explore the feasibility of membrane capacitive deionization (MCDI), a low-energy water treatment technique, as a novel pretreatment method for SGP. Laboratory-scale experiments were conducted to evaluate the impact of MCDI pretreatment on the performance of PRO and RED. The low-salinity water was obtained from a brackish water reverse osmosis (BWRO) plant, while the high-salinity water was a synthetic seawater desalination brine. The removal efficiency of organic and inorganic substances in brackish water reverse osmosis (BWRO) brine by MCDI was estimated, as well as theoretical energy consumption. The results demonstrated that MCDI attained removal efficiencies of up to 88.8% for organic substances and 78.8% for inorganic substances. This resulted in a notable enhancement in the lower density for both PRO and RED. The power density of PRO exhibited a notable enhancement, reaching 3.57 W/m<sup>2</sup> in comparison to 1.14 W/m<sup>2</sup> recorded for the BWRO brine. Conversely, the power density of RED increased from 1.47 W/m<sup>2</sup> to 2.05 W/m<sup>2</sup>. Given that the energy consumption by MCDI is relatively low, it can be surmised that the MCDI pretreatment enhances the overall efficiency of both PRO and RED. However, to fully capitalize on the benefits of MCDI pretreatment, it is recommended that further process optimization be conducted.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15020056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Salinity gradient power (SGP) technologies, including pressure-retarded osmosis (PRO) and reverse electrodialysis (RED), have the potential to be utilized for the purpose of harvesting energy from the difference in salinity between two water streams. One challenge associated with SGP is a reduction in power density due to membrane fouling when impaired water is utilized as a low-salinity water stream. Accordingly, this study sought to explore the feasibility of membrane capacitive deionization (MCDI), a low-energy water treatment technique, as a novel pretreatment method for SGP. Laboratory-scale experiments were conducted to evaluate the impact of MCDI pretreatment on the performance of PRO and RED. The low-salinity water was obtained from a brackish water reverse osmosis (BWRO) plant, while the high-salinity water was a synthetic seawater desalination brine. The removal efficiency of organic and inorganic substances in brackish water reverse osmosis (BWRO) brine by MCDI was estimated, as well as theoretical energy consumption. The results demonstrated that MCDI attained removal efficiencies of up to 88.8% for organic substances and 78.8% for inorganic substances. This resulted in a notable enhancement in the lower density for both PRO and RED. The power density of PRO exhibited a notable enhancement, reaching 3.57 W/m2 in comparison to 1.14 W/m2 recorded for the BWRO brine. Conversely, the power density of RED increased from 1.47 W/m2 to 2.05 W/m2. Given that the energy consumption by MCDI is relatively low, it can be surmised that the MCDI pretreatment enhances the overall efficiency of both PRO and RED. However, to fully capitalize on the benefits of MCDI pretreatment, it is recommended that further process optimization be conducted.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信