{"title":"Advances in Ceramic-Carbonate Dual-Phase Membrane Reactors for Direct CO<sub>2</sub> Separation and Utilization.","authors":"Xue Kang, Qing Yang, Jiajie Ma, Qiangchao Sun, Hongwei Cheng","doi":"10.3390/membranes15020053","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive (carbon dioxide) CO<sub>2</sub> emissions are a primary factor contributing to climate change. As one of the crucial technologies for alleviating CO<sub>2</sub> emissions, carbon capture and utilization (CCU) technology has attracted considerable global attention. Technologies for capturing CO<sub>2</sub> in extreme circumstances are indispensable for regulating CO<sub>2</sub> levels in industrial processes. The unique separation characteristics of the ceramic-carbonate dual-phase (CCDP) membranes are increasingly employed for CO<sub>2</sub> separation at high temperatures due to their outstanding chemical, thermal durability, and mechanical strength. This paper presents an overview of CO<sub>2</sub> capture approaches and materials. It also elaborates on the research progress of three types of CCDP membranes with distinct permeation mechanisms, concentrating on their principles, materials, and structures. Additionally, several typical membrane reactors, such as the dry reforming of methane (DRM) and reverse water-gas shift (RWGS), are discussed to demonstrate how captured CO<sub>2</sub> can function as a soft oxidant, converting feedstocks into valuable products through oxidation pathways designed within a single reactor. Finally, the future challenges and prospects of high-temperature CCDP membrane technologies and their related reactors are proposed.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15020053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive (carbon dioxide) CO2 emissions are a primary factor contributing to climate change. As one of the crucial technologies for alleviating CO2 emissions, carbon capture and utilization (CCU) technology has attracted considerable global attention. Technologies for capturing CO2 in extreme circumstances are indispensable for regulating CO2 levels in industrial processes. The unique separation characteristics of the ceramic-carbonate dual-phase (CCDP) membranes are increasingly employed for CO2 separation at high temperatures due to their outstanding chemical, thermal durability, and mechanical strength. This paper presents an overview of CO2 capture approaches and materials. It also elaborates on the research progress of three types of CCDP membranes with distinct permeation mechanisms, concentrating on their principles, materials, and structures. Additionally, several typical membrane reactors, such as the dry reforming of methane (DRM) and reverse water-gas shift (RWGS), are discussed to demonstrate how captured CO2 can function as a soft oxidant, converting feedstocks into valuable products through oxidation pathways designed within a single reactor. Finally, the future challenges and prospects of high-temperature CCDP membrane technologies and their related reactors are proposed.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.