TMF Attenuates Cognitive Impairment and Neuroinflammation by Inhibiting the MAPK/NF-κB Pathway in Alzheimer's Disease: A Multi-Omics Analysis.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-02-07 DOI:10.3390/md23020074
Yonglin Liu, Xi Xu, Xiaoming Wu, Guodong Yang, Jiaxin Luo, Xinli Liang, Jie Chen, Yiguang Li
{"title":"TMF Attenuates Cognitive Impairment and Neuroinflammation by Inhibiting the MAPK/NF-κB Pathway in Alzheimer's Disease: A Multi-Omics Analysis.","authors":"Yonglin Liu, Xi Xu, Xiaoming Wu, Guodong Yang, Jiaxin Luo, Xinli Liang, Jie Chen, Yiguang Li","doi":"10.3390/md23020074","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of Alzheimer's disease (AD) underscores the urgent need for novel therapeutic agents derived from natural sources. Among flavonoids, 3',4',5,7-tetramethoxyflavone (TMF), a structural analog of luteolin, has gained attention for its favorable pharmacokinetics and potential neuroprotective properties. Despite the significant neuroprotective effects and favorable pharmacokinetics of TMF, its efficacy and mechanism of action in AD remain unclear. This study explored TMF's pharmacological effects in AD models, highlighting its ability to improve memory and cognitive deficits in APP/PS1 mice. TMF reduced Aβ plaques, NFTs formation, and glial activation while suppressing neuroinflammation through the MAPK/NF-κB pathway. Further analysis in LPS-induced BV2 cells revealed TMF's ability to reduce microglial activation. These findings highlight the anti-neuroinflammatory activity of TMF, suggesting its potential as a treatment for AD.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23020074","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rising prevalence of Alzheimer's disease (AD) underscores the urgent need for novel therapeutic agents derived from natural sources. Among flavonoids, 3',4',5,7-tetramethoxyflavone (TMF), a structural analog of luteolin, has gained attention for its favorable pharmacokinetics and potential neuroprotective properties. Despite the significant neuroprotective effects and favorable pharmacokinetics of TMF, its efficacy and mechanism of action in AD remain unclear. This study explored TMF's pharmacological effects in AD models, highlighting its ability to improve memory and cognitive deficits in APP/PS1 mice. TMF reduced Aβ plaques, NFTs formation, and glial activation while suppressing neuroinflammation through the MAPK/NF-κB pathway. Further analysis in LPS-induced BV2 cells revealed TMF's ability to reduce microglial activation. These findings highlight the anti-neuroinflammatory activity of TMF, suggesting its potential as a treatment for AD.

TMF通过抑制阿尔茨海默病的MAPK/NF-κB通路减轻认知障碍和神经炎症:一项多组学分析
阿尔茨海默病(AD)的患病率不断上升,迫切需要天然来源的新型治疗药物。在黄酮类化合物中,3',4',5,7-四甲基黄酮(TMF)是木犀草素的结构类似物,因其良好的药代动力学和潜在的神经保护特性而受到关注。尽管TMF具有显著的神经保护作用和良好的药代动力学,但其在AD中的疗效和作用机制尚不清楚。本研究探讨了TMF在AD模型中的药理作用,强调了其改善APP/PS1小鼠记忆和认知缺陷的能力。TMF通过MAPK/NF-κB途径抑制神经炎症,减少β斑块、nft形成和神经胶质活化。在脂多糖诱导的BV2细胞中进一步分析发现TMF能够减少小胶质细胞的激活。这些发现强调了TMF的抗神经炎症活性,表明其治疗AD的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信