Elena Porcellato, Corrado Lanera, Honoria Ocagli, Matteo Danielis
{"title":"Exploring Applications of Artificial Intelligence in Critical Care Nursing: A Systematic Review.","authors":"Elena Porcellato, Corrado Lanera, Honoria Ocagli, Matteo Danielis","doi":"10.3390/nursrep15020055","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Artificial intelligence (AI) has been increasingly employed in healthcare across diverse domains, including medical imaging, personalized diagnostics, therapeutic interventions, and predictive analytics using electronic health records. Its integration is particularly impactful in critical care, where AI has demonstrated the potential to enhance patient outcomes. This systematic review critically evaluates the current applications of AI within the domain of critical care nursing. <b>Methods:</b> This systematic review is registered with PROSPERO (CRD42024545955) and was conducted in accordance with PRISMA guidelines. Comprehensive searches were performed across MEDLINE/PubMed, SCOPUS, CINAHL, and Web of Science. <b>Results:</b> The initial review identified 1364 articles, of which 24 studies met the inclusion criteria. These studies employed diverse AI techniques, including classical models (e.g., logistic regression), machine learning approaches (e.g., support vector machines, random forests), deep learning architectures (e.g., neural networks), and generative AI tools (e.g., ChatGPT). The analyzed health outcomes encompassed postoperative complications, ICU admissions and discharges, triage assessments, pressure injuries, sepsis, delirium, and predictions of adverse events or critical vital signs. Most studies relied on structured data from electronic medical records, such as vital signs and laboratory results, supplemented by unstructured data, including nursing notes and patient histories; two studies also integrated audio data. <b>Conclusion:</b> AI demonstrates significant potential in nursing, facilitating the use of clinical practice data for research and decision-making. The choice of AI techniques varies based on the specific objectives and requirements of the model. However, the heterogeneity of the studies included in this review limits the ability to draw definitive conclusions about the effectiveness of AI applications in critical care nursing. Future research should focus on more robust, interventional studies to assess the impact of AI on nursing-sensitive outcomes. Additionally, exploring a broader range of health outcomes and AI applications in critical care will be crucial for advancing AI integration in nursing practices.</p>","PeriodicalId":40753,"journal":{"name":"Nursing Reports","volume":"15 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nursing Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nursrep15020055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial intelligence (AI) has been increasingly employed in healthcare across diverse domains, including medical imaging, personalized diagnostics, therapeutic interventions, and predictive analytics using electronic health records. Its integration is particularly impactful in critical care, where AI has demonstrated the potential to enhance patient outcomes. This systematic review critically evaluates the current applications of AI within the domain of critical care nursing. Methods: This systematic review is registered with PROSPERO (CRD42024545955) and was conducted in accordance with PRISMA guidelines. Comprehensive searches were performed across MEDLINE/PubMed, SCOPUS, CINAHL, and Web of Science. Results: The initial review identified 1364 articles, of which 24 studies met the inclusion criteria. These studies employed diverse AI techniques, including classical models (e.g., logistic regression), machine learning approaches (e.g., support vector machines, random forests), deep learning architectures (e.g., neural networks), and generative AI tools (e.g., ChatGPT). The analyzed health outcomes encompassed postoperative complications, ICU admissions and discharges, triage assessments, pressure injuries, sepsis, delirium, and predictions of adverse events or critical vital signs. Most studies relied on structured data from electronic medical records, such as vital signs and laboratory results, supplemented by unstructured data, including nursing notes and patient histories; two studies also integrated audio data. Conclusion: AI demonstrates significant potential in nursing, facilitating the use of clinical practice data for research and decision-making. The choice of AI techniques varies based on the specific objectives and requirements of the model. However, the heterogeneity of the studies included in this review limits the ability to draw definitive conclusions about the effectiveness of AI applications in critical care nursing. Future research should focus on more robust, interventional studies to assess the impact of AI on nursing-sensitive outcomes. Additionally, exploring a broader range of health outcomes and AI applications in critical care will be crucial for advancing AI integration in nursing practices.
期刊介绍:
Nursing Reports is an open access, peer-reviewed, online-only journal that aims to influence the art and science of nursing by making rigorously conducted research accessible and understood to the full spectrum of practicing nurses, academics, educators and interested members of the public. The journal represents an exhilarating opportunity to make a unique and significant contribution to nursing and the wider community by addressing topics, theories and issues that concern the whole field of Nursing Science, including research, practice, policy and education. The primary intent of the journal is to present scientifically sound and influential empirical and theoretical studies, critical reviews and open debates to the global community of nurses. Short reports, opinions and insight into the plight of nurses the world-over will provide a voice for those of all cultures, governments and perspectives. The emphasis of Nursing Reports will be on ensuring that the highest quality of evidence and contribution is made available to the greatest number of nurses. Nursing Reports aims to make original, evidence-based, peer-reviewed research available to the global community of nurses and to interested members of the public. In addition, reviews of the literature, open debates on professional issues and short reports from around the world are invited to contribute to our vibrant and dynamic journal. All published work will adhere to the most stringent ethical standards and journalistic principles of fairness, worth and credibility. Our journal publishes Editorials, Original Articles, Review articles, Critical Debates, Short Reports from Around the Globe and Letters to the Editor.