Urinary Bladder Acute Inflammations and Nephritis of the Renal Pelvis: Diagnosis Using Fine-Tuned Large Language Models.

IF 3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Mohammad Khaleel Sallam Ma'aitah, Abdulkader Helwan, Abdelrahman Radwan
{"title":"Urinary Bladder Acute Inflammations and Nephritis of the Renal Pelvis: Diagnosis Using Fine-Tuned Large Language Models.","authors":"Mohammad Khaleel Sallam Ma'aitah, Abdulkader Helwan, Abdelrahman Radwan","doi":"10.3390/jpm15020045","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Large language models (LLMs) have seen a significant boost recently in the field of natural language processing (NLP) due to their capabilities in analyzing words. These autoregressive models prove robust in classification tasks where texts need to be analyzed and classified. <b>Objectives:</b> In this paper, we explore the power of base LLMs such as Generative Pre-trained Transformer 2 (GPT-2), Bidirectional Encoder Representations from Transformers (BERT), Distill-BERT, and TinyBERT in diagnosing acute inflammations of the urinary bladder and nephritis of the renal pelvis. <b>Materials and Methods:</b> the LLMs were trained and tested using supervised fine-tuning (SFT) on a dataset of 120 examples that include symptoms that may indicate the occurrence of these two conditions. <b>Results:</b> By employing a supervised fine-tuning method and carefully crafted prompts to present the data, we demonstrate the feasibility of using minimal training data to achieve a reasonable diagnostic, with overall testing accuracies of 100%, 100%, 94%, and 79%, for GPT-2, BERT, Distill-BERT, and TinyBERT, respectively.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15020045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Large language models (LLMs) have seen a significant boost recently in the field of natural language processing (NLP) due to their capabilities in analyzing words. These autoregressive models prove robust in classification tasks where texts need to be analyzed and classified. Objectives: In this paper, we explore the power of base LLMs such as Generative Pre-trained Transformer 2 (GPT-2), Bidirectional Encoder Representations from Transformers (BERT), Distill-BERT, and TinyBERT in diagnosing acute inflammations of the urinary bladder and nephritis of the renal pelvis. Materials and Methods: the LLMs were trained and tested using supervised fine-tuning (SFT) on a dataset of 120 examples that include symptoms that may indicate the occurrence of these two conditions. Results: By employing a supervised fine-tuning method and carefully crafted prompts to present the data, we demonstrate the feasibility of using minimal training data to achieve a reasonable diagnostic, with overall testing accuracies of 100%, 100%, 94%, and 79%, for GPT-2, BERT, Distill-BERT, and TinyBERT, respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Personalized Medicine
Journal of Personalized Medicine Medicine-Medicine (miscellaneous)
CiteScore
4.10
自引率
0.00%
发文量
1878
审稿时长
11 weeks
期刊介绍: Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信