Mihyang Ha, Woo Hyun Cho, Min Wook So, Daesup Lee, Yun Hak Kim, Hye Ju Yeo
{"title":"Development of a Machine Learning-Powered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data.","authors":"Mihyang Ha, Woo Hyun Cho, Min Wook So, Daesup Lee, Yun Hak Kim, Hye Ju Yeo","doi":"10.3346/jkms.2025.40.e18","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.</p><p><strong>Methods: </strong>This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno's C-index. Its performance was compared to the US LAS in an independent cohort.</p><p><strong>Results: </strong>The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.</p><p><strong>Conclusion: </strong>The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.</p>","PeriodicalId":16249,"journal":{"name":"Journal of Korean Medical Science","volume":"40 7","pages":"e18"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3346/jkms.2025.40.e18","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods: This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno's C-index. Its performance was compared to the US LAS in an independent cohort.
Results: The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion: The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
期刊介绍:
The Journal of Korean Medical Science (JKMS) is an international, peer-reviewed Open Access journal of medicine published weekly in English. The Journal’s publisher is the Korean Academy of Medical Sciences (KAMS), Korean Medical Association (KMA). JKMS aims to publish evidence-based, scientific research articles from various disciplines of the medical sciences. The Journal welcomes articles of general interest to medical researchers especially when they contain original information. Articles on the clinical evaluation of drugs and other therapies, epidemiologic studies of the general population, studies on pathogenic organisms and toxic materials, and the toxicities and adverse effects of therapeutics are welcome.