Colonial architecture modulates the speed and efficiency of multi-jet swimming in salp colonies.

IF 2.8 2区 生物学 Q2 BIOLOGY
Alejandro Damian-Serrano, Kai A Walton, Anneliese Bishop-Perdue, Sophie Bagoye, Kevin T Du Clos, Bradford J Gemmell, Sean P Colin, John H Costello, Kelly R Sutherland
{"title":"Colonial architecture modulates the speed and efficiency of multi-jet swimming in salp colonies.","authors":"Alejandro Damian-Serrano, Kai A Walton, Anneliese Bishop-Perdue, Sophie Bagoye, Kevin T Du Clos, Bradford J Gemmell, Sean P Colin, John H Costello, Kelly R Sutherland","doi":"10.1242/jeb.249465","DOIUrl":null,"url":null,"abstract":"<p><p>Salps are marine pelagic tunicates with a complex life cycle including a solitary and colonial stage. Salp colonies are composed of asexually budded individuals that coordinate their swimming by multi-jet propulsion. Colonies develop into species-specific architectures with distinct zooid orientations. These distinct colonial architectures vary in how frontal area scales with the number of zooids in the colony. Here, we address how differences in frontal area drive differences in swimming speed and the relationship between swimming speed and cost of transport in salps. We (1) compare swimming speed across salp species and architectures, (2) evaluate how swimming speed scales with the number of zooids across colony in architectures, and (3) compare the metabolic cost of transport across species and how it scales with swimming speed. To measure swimming speeds, we recorded swimming salp colonies using in situ videography while SCUBA diving in the open ocean. To estimate the cost of transport, we measured the respiration rates of swimming and anesthetized salps collected in situ using jars equipped with non-invasive oxygen sensors. We found that linear colonies swim faster, which supports idea that their differential advantage in frontal area scales with an increasing number of zooids. We also found that higher swimming speeds predict lower costs of transport in salps. These findings underscore the importance of considering propeller arrangement to optimize speed and energy efficiency in bioinspired underwater vehicle design, leveraging lessons learned from the diverse natural laboratory provided by salp diversity.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249465","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salps are marine pelagic tunicates with a complex life cycle including a solitary and colonial stage. Salp colonies are composed of asexually budded individuals that coordinate their swimming by multi-jet propulsion. Colonies develop into species-specific architectures with distinct zooid orientations. These distinct colonial architectures vary in how frontal area scales with the number of zooids in the colony. Here, we address how differences in frontal area drive differences in swimming speed and the relationship between swimming speed and cost of transport in salps. We (1) compare swimming speed across salp species and architectures, (2) evaluate how swimming speed scales with the number of zooids across colony in architectures, and (3) compare the metabolic cost of transport across species and how it scales with swimming speed. To measure swimming speeds, we recorded swimming salp colonies using in situ videography while SCUBA diving in the open ocean. To estimate the cost of transport, we measured the respiration rates of swimming and anesthetized salps collected in situ using jars equipped with non-invasive oxygen sensors. We found that linear colonies swim faster, which supports idea that their differential advantage in frontal area scales with an increasing number of zooids. We also found that higher swimming speeds predict lower costs of transport in salps. These findings underscore the importance of considering propeller arrangement to optimize speed and energy efficiency in bioinspired underwater vehicle design, leveraging lessons learned from the diverse natural laboratory provided by salp diversity.

盐鲤是一种海洋中上层鳞栉水母,具有复杂的生命周期,包括单生和群生阶段。盐类的群体由无性生殖的个体组成,它们通过多喷射推进器协调游动。群落发展成物种特有的结构,具有不同的类群方向。这些不同的生物群落结构随生物群落中动物体数量的增加而变化。在这里,我们探讨了额叶面积的差异如何驱动蝾螈游泳速度的差异,以及游泳速度与运输成本之间的关系。我们(1)比较了不同种类和结构的蝾螈的游泳速度;(2)评估了不同结构的蝾螈群体中游泳速度如何与动物个体数量成比例关系;(3)比较了不同种类蝾螈的运输代谢成本及其如何与游泳速度成比例关系。为了测量游速,我们在大洋中潜水时使用原位摄像技术记录了游动的蝾螈群落。为了估算运输成本,我们使用装有非侵入式氧气传感器的罐子测量了在原地采集的游动蝾螈和麻醉蝾螈的呼吸速率。我们发现,线性繁殖体游得更快,这支持了它们在前额面积上的差异优势随动物个体数量增加而扩大的观点。我们还发现,较高的游泳速度预示着蝾螈的运输成本较低。这些发现强调了在生物启发式水下航行器设计中考虑螺旋桨布置以优化速度和能效的重要性,同时也强调了从蝾螈多样性所提供的多样化自然实验室中吸取经验教训的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信