A stable GH31 α-glucosidase as a model system for the study of mutations leading to human glycogen storage disease type II.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Roberta Iacono, Francesca Maria Pia Paragliola, Andrea Strazzulli, Marco Moracci
{"title":"A stable GH31 α-glucosidase as a model system for the study of mutations leading to human glycogen storage disease type II.","authors":"Roberta Iacono, Francesca Maria Pia Paragliola, Andrea Strazzulli, Marco Moracci","doi":"10.1080/14756366.2025.2468859","DOIUrl":null,"url":null,"abstract":"<p><p>GH31 glycosidases are widespread across organisms, but remarkably, less than 1% of them have been biochemically characterised to date. Among them, human lysosomal acid α-glucosidase (GAA) stands out due to its link to Pompe disease, a rare lysosomal storage disorder caused by its deficiency. This disease results in glycogen accumulation, severe cellular damage, motor impairment, and premature death. Structural and functional studies of GAA mutants are challenging due to their instability and lack of activity, hindering their expression and purification. The GH31 enzyme MalA from a hyperthermophilic archaeon is explored here as a stable homolog of GAA. MalA is highly expressible, easy to purify, and structurally characterised. The R400H mutant in MalA, corresponding to the pathogenic GAA R600H mutation, revealed here a 1200-fold drop in specificity constant and >8 °C reduction in thermal stability. We propose MalA's as a robust model for studying GAA mutations and developing therapeutic chaperones.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2468859"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2468859","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

GH31 glycosidases are widespread across organisms, but remarkably, less than 1% of them have been biochemically characterised to date. Among them, human lysosomal acid α-glucosidase (GAA) stands out due to its link to Pompe disease, a rare lysosomal storage disorder caused by its deficiency. This disease results in glycogen accumulation, severe cellular damage, motor impairment, and premature death. Structural and functional studies of GAA mutants are challenging due to their instability and lack of activity, hindering their expression and purification. The GH31 enzyme MalA from a hyperthermophilic archaeon is explored here as a stable homolog of GAA. MalA is highly expressible, easy to purify, and structurally characterised. The R400H mutant in MalA, corresponding to the pathogenic GAA R600H mutation, revealed here a 1200-fold drop in specificity constant and >8 °C reduction in thermal stability. We propose MalA's as a robust model for studying GAA mutations and developing therapeutic chaperones.

GH31 糖苷酶广泛存在于生物体内,但值得注意的是,迄今为止只有不到 1%的糖苷酶得到了生化鉴定。其中,人类溶酶体酸性α-葡萄糖苷酶(GAA)因其与庞贝病(一种因缺乏该酶而导致的罕见溶酶体贮积症)的联系而脱颖而出。这种疾病会导致糖原累积、严重的细胞损伤、运动障碍和过早死亡。由于 GAA 突变体的不稳定性和缺乏活性,阻碍了它们的表达和纯化,因此对它们进行结构和功能研究具有挑战性。本文探讨了来自嗜热古生物的 GH31 酶 MalA,将其作为 GAA 的稳定同源物。MalA 可高度表达,易于纯化,并具有结构特征。MalA 的 R400H 突变体与致病的 GAA R600H 突变体相对应,其特异性常数下降了 1200 倍,热稳定性降低了 8 °C。我们建议将 MalA 作为研究 GAA 突变和开发治疗伴侣的可靠模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信