{"title":"Schiff Base-Crosslinked Tetra-PEG-BSA Hydrogel: Design, Properties, and Multifunctional Functions.","authors":"Yuanyuan Qu, Jinlong Li, Xin Jia, Lijun Yin","doi":"10.3390/jfb16020069","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end groups (Tetra-PEG-CHO) and bovine serum albumin (BSA) under alkaline conditions. In addition, the Tetra-PEG-BSA hydrogel showed a rapid gelation time of around 11 s, much faster than that of the GLU-BSA, HT-BSA, and GDL-BSA hydrogels. It had high optical transmittance (92.92% at 600 nm) and swelling ratios superior to the other gels in different solutions, maintaining structural integrity even in denaturing environments such as guanidine hydrochloride and SDS. Mechanical tests showed superior strain at break (84.12 ± 0.76%), rupture stress (28.64 ± 1.21 kPa), and energy dissipation ability (468.0 ± 34.9 kJ·m<sup>-3</sup>), surpassing all control group hydrogels. MTT cytotoxicity assays indicated that cell viability remained >80% at lower concentrations, confirming excellent biocompatibility. These findings suggest that Tetra-PEG-BSA hydrogels may serve as effective materials for drug delivery, tissue engineering, and 3D printing.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020069","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end groups (Tetra-PEG-CHO) and bovine serum albumin (BSA) under alkaline conditions. In addition, the Tetra-PEG-BSA hydrogel showed a rapid gelation time of around 11 s, much faster than that of the GLU-BSA, HT-BSA, and GDL-BSA hydrogels. It had high optical transmittance (92.92% at 600 nm) and swelling ratios superior to the other gels in different solutions, maintaining structural integrity even in denaturing environments such as guanidine hydrochloride and SDS. Mechanical tests showed superior strain at break (84.12 ± 0.76%), rupture stress (28.64 ± 1.21 kPa), and energy dissipation ability (468.0 ± 34.9 kJ·m-3), surpassing all control group hydrogels. MTT cytotoxicity assays indicated that cell viability remained >80% at lower concentrations, confirming excellent biocompatibility. These findings suggest that Tetra-PEG-BSA hydrogels may serve as effective materials for drug delivery, tissue engineering, and 3D printing.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.