Haplotype-Phased Chromosome-Level Genome Assembly of Cryptoporus qinlingensis, a Typical Traditional Chinese Medicine Fungus.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Yu Song, Ming Zhang, Yu-Ying Liu, Minglei Li, Xiuchao Xie, Jianzhao Qi
{"title":"Haplotype-Phased Chromosome-Level Genome Assembly of <i>Cryptoporus qinlingensis</i>, a Typical Traditional Chinese Medicine Fungus.","authors":"Yu Song, Ming Zhang, Yu-Ying Liu, Minglei Li, Xiuchao Xie, Jianzhao Qi","doi":"10.3390/jof11020163","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the first comprehensive genomic analysis of <i>Cryptoporus qinlingensis</i>, a classical folk medicine and newly identified macrofungus from the Qinling Mountains. Utilizing advanced sequencing technologies, including PacBio HiFi and Hi-C, we achieved a high-quality chromosome-level genome assembly. The genome, sized at 39.1 Mb, exhibits a heterozygosity of 0.21% and contains 21.2% repetitive sequences. Phylogenetic analysis revealed a recent divergence of <i>C. qinlingensis</i> from <i>Dichomitus squalens</i> approximately 212.26 million years ago (MYA), highlighting the rapid diversification within the Polyporaceae family. Comparative genomic studies indicate significant gene family contraction in <i>C. qinlingensis</i>, suggesting evolutionary adaptations. The identification of a tetrapolar mating system, along with the analysis of CAZymes and P450 genes, underscores the genomic complexity and ecological adaptability of this species. Furthermore, the discovery of 30 biosynthetic gene clusters (BGCs) related to secondary metabolites, including polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), and terpene synthesis enzymes, opens new avenues for exploring bioactive compounds with potential medicinal applications. This research not only enriches our understanding of the <i>Cryptoporus</i> genus but also provides a valuable foundation for future studies aiming to harness the therapeutic potential of <i>C. qinlingensis</i> and to further explore its ecological and evolutionary significance.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11020163","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the first comprehensive genomic analysis of Cryptoporus qinlingensis, a classical folk medicine and newly identified macrofungus from the Qinling Mountains. Utilizing advanced sequencing technologies, including PacBio HiFi and Hi-C, we achieved a high-quality chromosome-level genome assembly. The genome, sized at 39.1 Mb, exhibits a heterozygosity of 0.21% and contains 21.2% repetitive sequences. Phylogenetic analysis revealed a recent divergence of C. qinlingensis from Dichomitus squalens approximately 212.26 million years ago (MYA), highlighting the rapid diversification within the Polyporaceae family. Comparative genomic studies indicate significant gene family contraction in C. qinlingensis, suggesting evolutionary adaptations. The identification of a tetrapolar mating system, along with the analysis of CAZymes and P450 genes, underscores the genomic complexity and ecological adaptability of this species. Furthermore, the discovery of 30 biosynthetic gene clusters (BGCs) related to secondary metabolites, including polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), and terpene synthesis enzymes, opens new avenues for exploring bioactive compounds with potential medicinal applications. This research not only enriches our understanding of the Cryptoporus genus but also provides a valuable foundation for future studies aiming to harness the therapeutic potential of C. qinlingensis and to further explore its ecological and evolutionary significance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信