Genomic Analysis of Penicillium griseofulvum CF3 Reveals Potential for Plant Growth Promotion and Disease Resistance.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Jianfei Yang, Wenshuai Zang, Jie Chen, Dongying Lu, Ruotong Li, Ciyun Li, Yinhua Chen, Qin Liu, Xiaolei Niu
{"title":"Genomic Analysis of <i>Penicillium griseofulvum</i> CF3 Reveals Potential for Plant Growth Promotion and Disease Resistance.","authors":"Jianfei Yang, Wenshuai Zang, Jie Chen, Dongying Lu, Ruotong Li, Ciyun Li, Yinhua Chen, Qin Liu, Xiaolei Niu","doi":"10.3390/jof11020153","DOIUrl":null,"url":null,"abstract":"<p><p><i>Penicillium griseofulvum</i> CF3 is a fungus isolated from healthy strawberry soil, with the potential to promote the growth of plants and enhance their resistance to diseases. However, the genome sequence of <i>P. griseofulvum</i> CF3 remains unclear. Therefore, we performed the whole-genome CCS sequencing of <i>P. griseofulvum</i> CF3 using the PacBio Sequel II platform. The assembled genome comprised 104 contigs, with a total length of 37,564,657 bp, encoding 13,252 protein-coding genes. Comprehensive functional annotation was performed using various BLAST databases, including the non-redundant (Nr) protein sequence database, Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG), and the Carbohydrate-Active enZymes (CAZy) database, to identify and predict protein-coding genes, tRNAs, and rRNAs. The Antibiotics and Secondary Metabolites Analysis Shell (Antismash) analysis identified 50 biosynthetic gene clusters involved in secondary metabolite production within the <i>P. griseofulvum</i> CF3 genome. The whole-genome sequencing of <i>P. griseofulvum</i> CF3 helps us to understand its potential mechanisms in promoting plant growth and enhancing disease resistance, paving the way for the application of the CF3 strain in sustainable crop production.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11020153","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Penicillium griseofulvum CF3 is a fungus isolated from healthy strawberry soil, with the potential to promote the growth of plants and enhance their resistance to diseases. However, the genome sequence of P. griseofulvum CF3 remains unclear. Therefore, we performed the whole-genome CCS sequencing of P. griseofulvum CF3 using the PacBio Sequel II platform. The assembled genome comprised 104 contigs, with a total length of 37,564,657 bp, encoding 13,252 protein-coding genes. Comprehensive functional annotation was performed using various BLAST databases, including the non-redundant (Nr) protein sequence database, Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG), and the Carbohydrate-Active enZymes (CAZy) database, to identify and predict protein-coding genes, tRNAs, and rRNAs. The Antibiotics and Secondary Metabolites Analysis Shell (Antismash) analysis identified 50 biosynthetic gene clusters involved in secondary metabolite production within the P. griseofulvum CF3 genome. The whole-genome sequencing of P. griseofulvum CF3 helps us to understand its potential mechanisms in promoting plant growth and enhancing disease resistance, paving the way for the application of the CF3 strain in sustainable crop production.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信