{"title":"<i>Ganoderma lucidum</i> Immobilized on Wood Demonstrates High Persistence During the Removal of OPFRs in a Trickle-Bed Bioreactor.","authors":"Shamim Tayar, Javier Villagra, Núria Gaju, Maira Martínez-Alonso, Eduardo Beltrán-Flores, Montserrat Sarrà","doi":"10.3390/jof11020085","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging pollutants such as organophosphate flame retardants (OPFRs) pose a critical threat to environmental and human health, while conventional wastewater treatments often fail to remove them. This study addresses this issue by evaluating the bioremediation potential of white-rot fungi for the removal of two OPFRs: tris(2-chloroethyl) phosphate (TCEP) and tributyl phosphate (TBP). Three fungal species-<i>Ganoderma lucidum</i>, <i>Trametes versicolor</i>, and <i>Phanerochaete velutina</i>-were screened for their degradation capabilities. Among these, <i>G. lucidum</i> and <i>T. versicolor</i> demonstrated removal efficiencies exceeding 99% for TBP, while removal rates for TCEP were significantly lower, with a maximum of 30%. The exploration of the enzyme role showed that cytochrome P450 is involved in the degradation while the extracellular laccase is not involved. Continuous batch experiments were performed using a trickle-bed reactor (TBR) operating under non-sterile conditions, a setting that closely resembles real-world wastewater treatment environments. <i>G. lucidum</i> was immobilized on oak wood chips, and the removal efficiencies were measured to be 85.3% and 54.8% for TBP and TCEP, respectively, over 10 cycles. Microbial community analysis showed that <i>G. lucidum</i> remained the dominant species in the reactor. These findings demonstrate the efficacy of fungal-based trickle-bed bioreactors, offering a sustainable and efficient alternative for addressing environmental pollution caused by highly recalcitrant pollutants.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11020085","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging pollutants such as organophosphate flame retardants (OPFRs) pose a critical threat to environmental and human health, while conventional wastewater treatments often fail to remove them. This study addresses this issue by evaluating the bioremediation potential of white-rot fungi for the removal of two OPFRs: tris(2-chloroethyl) phosphate (TCEP) and tributyl phosphate (TBP). Three fungal species-Ganoderma lucidum, Trametes versicolor, and Phanerochaete velutina-were screened for their degradation capabilities. Among these, G. lucidum and T. versicolor demonstrated removal efficiencies exceeding 99% for TBP, while removal rates for TCEP were significantly lower, with a maximum of 30%. The exploration of the enzyme role showed that cytochrome P450 is involved in the degradation while the extracellular laccase is not involved. Continuous batch experiments were performed using a trickle-bed reactor (TBR) operating under non-sterile conditions, a setting that closely resembles real-world wastewater treatment environments. G. lucidum was immobilized on oak wood chips, and the removal efficiencies were measured to be 85.3% and 54.8% for TBP and TCEP, respectively, over 10 cycles. Microbial community analysis showed that G. lucidum remained the dominant species in the reactor. These findings demonstrate the efficacy of fungal-based trickle-bed bioreactors, offering a sustainable and efficient alternative for addressing environmental pollution caused by highly recalcitrant pollutants.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.