Galleria mellonella as an Invertebrate Model for Studying Fungal Infections.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Gabriel Davi Marena, Luciana Thomaz, Joshua Daniel Nosanchuk, Carlos Pelleschi Taborda
{"title":"<i>Galleria mellonella</i> as an Invertebrate Model for Studying Fungal Infections.","authors":"Gabriel Davi Marena, Luciana Thomaz, Joshua Daniel Nosanchuk, Carlos Pelleschi Taborda","doi":"10.3390/jof11020157","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of fungal infections continues to increase and one of the factors responsible for these high rates is the emergence of multi-resistant species, hospitalizations, inappropriate or prolonged use of medications, and pandemics, such as the ongoing HIV/AIDS pandemic. The recent pandemic caused by the severe acute respiratory syndrome virus (SARS-CoV-2) has led to a significant increase in fungal infections, especially systemic mycoses caused by opportunistic fungi. There is a growing and urgent need to better understand how these microorganisms cause infection and develop resistance as well as to develop new therapeutic strategies to combat the diverse diseases caused by fungi. Non-mammalian hosts are increasingly used as alternative models to study microbial infections. Due to their low cost, simplicity of care, conserved innate immunity and reduced ethical issues, the greater wax moth <i>Galleria mellonella</i> is an excellent model host for studying fungal infections and it is currently widely used to study fungal pathogenesis and develop innovative strategies to mitigate the mycoses studied. <i>G. mellonella</i> can grow at 37 °C, which is similar to the mammalian temperature, and the anatomy of the larvae allows researchers to easily deliver pathogens, biological products, compounds and drugs. The aim of this review is to describe how <i>G. mellonella</i> is being used as a model system to study fungal infections as well as the importance of this model in evaluating the antifungal profile of potential drug candidates or new therapies against fungi.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11020157","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of fungal infections continues to increase and one of the factors responsible for these high rates is the emergence of multi-resistant species, hospitalizations, inappropriate or prolonged use of medications, and pandemics, such as the ongoing HIV/AIDS pandemic. The recent pandemic caused by the severe acute respiratory syndrome virus (SARS-CoV-2) has led to a significant increase in fungal infections, especially systemic mycoses caused by opportunistic fungi. There is a growing and urgent need to better understand how these microorganisms cause infection and develop resistance as well as to develop new therapeutic strategies to combat the diverse diseases caused by fungi. Non-mammalian hosts are increasingly used as alternative models to study microbial infections. Due to their low cost, simplicity of care, conserved innate immunity and reduced ethical issues, the greater wax moth Galleria mellonella is an excellent model host for studying fungal infections and it is currently widely used to study fungal pathogenesis and develop innovative strategies to mitigate the mycoses studied. G. mellonella can grow at 37 °C, which is similar to the mammalian temperature, and the anatomy of the larvae allows researchers to easily deliver pathogens, biological products, compounds and drugs. The aim of this review is to describe how G. mellonella is being used as a model system to study fungal infections as well as the importance of this model in evaluating the antifungal profile of potential drug candidates or new therapies against fungi.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信