An inherited predisposition allele promotes gastric cancer via enhancing deubiquitination-mediated activation of epithelial-to-mesenchymal transition signaling.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Bolin Tao, Zhenning Wang, Xuanyi Wang, Aixia Song, Jiaxian Liu, Jianan Wang, Qin Zhang, Zhaolin Chen, Zixian Wang, Wenjie Xu, Menghong Sun, Yanong Wang, Ping Zhang, Tao Xu, Gong-Hong Wei, Fei Xavier Chen, Mengyun Wang
{"title":"An inherited predisposition allele promotes gastric cancer via enhancing deubiquitination-mediated activation of epithelial-to-mesenchymal transition signaling.","authors":"Bolin Tao, Zhenning Wang, Xuanyi Wang, Aixia Song, Jiaxian Liu, Jianan Wang, Qin Zhang, Zhaolin Chen, Zixian Wang, Wenjie Xu, Menghong Sun, Yanong Wang, Ping Zhang, Tao Xu, Gong-Hong Wei, Fei Xavier Chen, Mengyun Wang","doi":"10.1172/JCI179617","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide human genetic studies have identified inherited cis-regulatory loci variants that predispose to cancers. However, the mechanisms by which these germline variants influence cancer progression, particularly through gene expression and proteostasis control, remain unclear. By analyzing genomic data from a gastric cancer (GC) case-control study (2,117 individuals), focusing on the ubiquitin-specific protease (USP) family, we identify the single nucleotide polymorphism (SNP) rs72856331 (G>A) in the promoter region of the proto-oncogene USP47 as a putative susceptibility allele for GC (OR = 0.78, P = 0.015). Mechanistically, the risk allele G is associated with enhanced USP47 expression, mediated by altered recruitment of the transcription factor GLI3 and changes in the epigenetic status at promoter. CRISPR/Cas9-mediated single-nucleotide conversion into risk allele G results in increased GLI3 binding and subsequent USP47 upregulation. The depletion of GLI3 results in a reduction of cancer-related phenotypes, similar to those observed following USP47 knockdown. Furthermore, we identify Snai1 as a deubiquitination target of USP47, explaining USP47-dependent activation of epithelial-mesenchymal transition pathway and tumor progression. Our findings identify an important genetic predisposition that implicates the perturbation of transcription and proteostasis programs in GC, offering insights into prevention and therapeutic strategies for genetically stratified patients.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI179617","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide human genetic studies have identified inherited cis-regulatory loci variants that predispose to cancers. However, the mechanisms by which these germline variants influence cancer progression, particularly through gene expression and proteostasis control, remain unclear. By analyzing genomic data from a gastric cancer (GC) case-control study (2,117 individuals), focusing on the ubiquitin-specific protease (USP) family, we identify the single nucleotide polymorphism (SNP) rs72856331 (G>A) in the promoter region of the proto-oncogene USP47 as a putative susceptibility allele for GC (OR = 0.78, P = 0.015). Mechanistically, the risk allele G is associated with enhanced USP47 expression, mediated by altered recruitment of the transcription factor GLI3 and changes in the epigenetic status at promoter. CRISPR/Cas9-mediated single-nucleotide conversion into risk allele G results in increased GLI3 binding and subsequent USP47 upregulation. The depletion of GLI3 results in a reduction of cancer-related phenotypes, similar to those observed following USP47 knockdown. Furthermore, we identify Snai1 as a deubiquitination target of USP47, explaining USP47-dependent activation of epithelial-mesenchymal transition pathway and tumor progression. Our findings identify an important genetic predisposition that implicates the perturbation of transcription and proteostasis programs in GC, offering insights into prevention and therapeutic strategies for genetically stratified patients.

一种遗传易感性等位基因通过加强去泛素化介导的上皮细胞向间质转化信号的激活来促进胃癌的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信