Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep.

IF 2.4 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Reza Amanollahi, Stacey L Holman, Melanie R Bertossa, Ashley S Meakin, Kent L Thornburg, I Caroline McMillen, Michael D Wiese, Mitchell C Lock, Janna L Morrison
{"title":"Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep.","authors":"Reza Amanollahi, Stacey L Holman, Melanie R Bertossa, Ashley S Meakin, Kent L Thornburg, I Caroline McMillen, Michael D Wiese, Mitchell C Lock, Janna L Morrison","doi":"10.3390/jcdd12020036","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding hormonal and molecular changes during the transition from preterm to near-term gestation is essential for investigating how pregnancy complications impact fetal heart development and contribute to long-term cardiovascular risks for offspring. This study examines these cardiac changes in fetal sheep, focusing on the changes between 116 days (preterm) and 140 days (near term) of gestation (dG, term = 150) using Western blotting, LC-MS/MS, and histological techniques. We observed a strong correlation between cortisol and T<sub>3</sub> (Triiodothyronine) in heart tissue in near-term fetuses, highlighting the role of glucocorticoid signalling in fetal heart maturation. Protein expression patterns in the heart revealed a decrease in multiple glucocorticoid receptor isoforms (GRα-A, GR-P, GR-A, GRα-D2, and GRα-D3), alongside a decrease in IGF-1R (a marker of cardiac proliferative capacity) and p-FOXO1(Thr24) but an increase in PCNA (a marker of DNA replication), indicating a shift towards cardiomyocyte maturation from preterm to near term. The increased expression of proteins regulating mitochondrial biogenesis and OXPHOS complex 4 reflects the known transition from glycolysis to oxidative phosphorylation, essential for meeting the energy demands of the postnatal heart. We also found altered glucose transporter expression, with increased pIRS-1(ser789) and GLUT-4 but decreased GLUT-1 expression, suggesting improved insulin responsiveness as the heart approaches term. Notably, the reduced protein abundance of SIRT-1 and SERCA2, along with increased phosphorylation of cardiac Troponin I(Ser23/24), indicates adaptations for more energy-efficient contraction in the near-term heart. In conclusion, these findings show the complex interplay of hormonal, metabolic, and growth changes that regulate fetal heart development, providing new insights into heart development that are crucial for understanding pathological conditions at birth and throughout life.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12020036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding hormonal and molecular changes during the transition from preterm to near-term gestation is essential for investigating how pregnancy complications impact fetal heart development and contribute to long-term cardiovascular risks for offspring. This study examines these cardiac changes in fetal sheep, focusing on the changes between 116 days (preterm) and 140 days (near term) of gestation (dG, term = 150) using Western blotting, LC-MS/MS, and histological techniques. We observed a strong correlation between cortisol and T3 (Triiodothyronine) in heart tissue in near-term fetuses, highlighting the role of glucocorticoid signalling in fetal heart maturation. Protein expression patterns in the heart revealed a decrease in multiple glucocorticoid receptor isoforms (GRα-A, GR-P, GR-A, GRα-D2, and GRα-D3), alongside a decrease in IGF-1R (a marker of cardiac proliferative capacity) and p-FOXO1(Thr24) but an increase in PCNA (a marker of DNA replication), indicating a shift towards cardiomyocyte maturation from preterm to near term. The increased expression of proteins regulating mitochondrial biogenesis and OXPHOS complex 4 reflects the known transition from glycolysis to oxidative phosphorylation, essential for meeting the energy demands of the postnatal heart. We also found altered glucose transporter expression, with increased pIRS-1(ser789) and GLUT-4 but decreased GLUT-1 expression, suggesting improved insulin responsiveness as the heart approaches term. Notably, the reduced protein abundance of SIRT-1 and SERCA2, along with increased phosphorylation of cardiac Troponin I(Ser23/24), indicates adaptations for more energy-efficient contraction in the near-term heart. In conclusion, these findings show the complex interplay of hormonal, metabolic, and growth changes that regulate fetal heart development, providing new insights into heart development that are crucial for understanding pathological conditions at birth and throughout life.

胎儿心脏代谢途径的本体发育:皮质醇和甲状腺激素在推动绵羊心脏发育从早产向近产过渡中的潜在作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cardiovascular Development and Disease
Journal of Cardiovascular Development and Disease CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
2.60
自引率
12.50%
发文量
381
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信