{"title":"Mixed Reality (Holography)-Guided Minimally Invasive Cardiac Surgery-A Novel Comparative Feasibility Study.","authors":"Winn Maung Maung Aye, Laszlo Kiraly, Senthil S Kumar, Ayyadarshan Kasivishvanaath, Yujia Gao, Theodoros Kofidis","doi":"10.3390/jcdd12020049","DOIUrl":null,"url":null,"abstract":"<p><p>The operative field and exposure in minimally invasive cardiac surgery (MICS) are limited. Meticulous preoperative planning and intraoperative visualization are crucial. We present our initial experience with HoloLens<sup>®</sup> 2 as an intraoperative guide during MICS procedures: aortic valve replacement (AVR) via right anterior small thoracotomy, coronary artery bypass graft surgery (CABG) via left anterior small thoracotomy (LAST), and pulmonary valve replacement (PVR) via LAST. Three-dimensional (3D) segmentations were performed using the patient's computer tomography (CT) data subsequently rendered into a 3D hologram on the HoloLens<sup>®</sup> 2. The holographic image was then superimposed on the patient lying on the operating table, using the xiphoid and the clavicle as landmarks, and was used as a real-time anatomical image guide for the surgery. The incision site marking made using HoloLens<sup>®</sup> 2 differed by one intercostal space from the marking made using a conventional surgeon's mental reconstructed image from the patient's preoperative imaging and was found to be a more appropriate site of entry into the chest for the structure of interest. The transparent visor of the HoloLens<sup>®</sup> 2 provided unobstructed views of the operating field. A mixed reality (MR) device could contribute to preoperative surgical planning and intraoperative real-time image guidance, which facilitates the understanding of anatomical relationships. MR has the potential to improve surgical precision, decrease risk, and enhance patient safety.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12020049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The operative field and exposure in minimally invasive cardiac surgery (MICS) are limited. Meticulous preoperative planning and intraoperative visualization are crucial. We present our initial experience with HoloLens® 2 as an intraoperative guide during MICS procedures: aortic valve replacement (AVR) via right anterior small thoracotomy, coronary artery bypass graft surgery (CABG) via left anterior small thoracotomy (LAST), and pulmonary valve replacement (PVR) via LAST. Three-dimensional (3D) segmentations were performed using the patient's computer tomography (CT) data subsequently rendered into a 3D hologram on the HoloLens® 2. The holographic image was then superimposed on the patient lying on the operating table, using the xiphoid and the clavicle as landmarks, and was used as a real-time anatomical image guide for the surgery. The incision site marking made using HoloLens® 2 differed by one intercostal space from the marking made using a conventional surgeon's mental reconstructed image from the patient's preoperative imaging and was found to be a more appropriate site of entry into the chest for the structure of interest. The transparent visor of the HoloLens® 2 provided unobstructed views of the operating field. A mixed reality (MR) device could contribute to preoperative surgical planning and intraoperative real-time image guidance, which facilitates the understanding of anatomical relationships. MR has the potential to improve surgical precision, decrease risk, and enhance patient safety.