Factors Affecting the Color Change of Monolithic Zirconia Ceramics: A Narrative Review.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Ebru Binici Aygün, Esra Kaynak Öztürk, Ayşe Bilge Tülü, Bilge Turhan Bal, Seçil Karakoca Nemli, Merve Bankoğlu Güngör
{"title":"Factors Affecting the Color Change of Monolithic Zirconia Ceramics: A Narrative Review.","authors":"Ebru Binici Aygün, Esra Kaynak Öztürk, Ayşe Bilge Tülü, Bilge Turhan Bal, Seçil Karakoca Nemli, Merve Bankoğlu Güngör","doi":"10.3390/jfb16020058","DOIUrl":null,"url":null,"abstract":"<p><p>Zirconia restorations are widely used in dentistry due to their high esthetic expectations and physical durability. However, zirconia's opaque white color can compromise esthetics. Therefore, zirconia is often veneered with porcelain, but fractures may occur in the veneer layer. Monolithic zirconia restorations, which do not require porcelain veneering and offer higher translucency, have been developed to address this issue. Zirconia exists in three main crystal phases: monoclinic, tetragonal, and cubic. Metal oxides such as yttrium are added to stabilize the tetragonal phase at room temperature. 3Y-TZP contains 3 mol% yttrium and provides high mechanical strength but has poor optical properties. Recently, 4Y-PSZ and 5Y-PSZ ceramics, which offer better optical properties but lower mechanical strength, have been introduced. This review examines the factors affecting the color change in monolithic zirconia ceramics. These factors are categorized into six main groups: cement type and color, restoration thickness, substrate color, sintering, aging, and zirconia type. Cement type and color are crucial in determining the final shade, especially in thin restorations. Increased restoration thickness reduces the influence of the substrate color while the sintering temperature and process improve optical properties. These findings emphasize the importance of material selection and application processes in ensuring esthetic harmony in zirconia restorations. This review aims to bridge gaps in the literature by providing valuable insights that guide clinicians in selecting and applying zirconia materials to meet both esthetic and functional requirements in restorative dentistry.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020058","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconia restorations are widely used in dentistry due to their high esthetic expectations and physical durability. However, zirconia's opaque white color can compromise esthetics. Therefore, zirconia is often veneered with porcelain, but fractures may occur in the veneer layer. Monolithic zirconia restorations, which do not require porcelain veneering and offer higher translucency, have been developed to address this issue. Zirconia exists in three main crystal phases: monoclinic, tetragonal, and cubic. Metal oxides such as yttrium are added to stabilize the tetragonal phase at room temperature. 3Y-TZP contains 3 mol% yttrium and provides high mechanical strength but has poor optical properties. Recently, 4Y-PSZ and 5Y-PSZ ceramics, which offer better optical properties but lower mechanical strength, have been introduced. This review examines the factors affecting the color change in monolithic zirconia ceramics. These factors are categorized into six main groups: cement type and color, restoration thickness, substrate color, sintering, aging, and zirconia type. Cement type and color are crucial in determining the final shade, especially in thin restorations. Increased restoration thickness reduces the influence of the substrate color while the sintering temperature and process improve optical properties. These findings emphasize the importance of material selection and application processes in ensuring esthetic harmony in zirconia restorations. This review aims to bridge gaps in the literature by providing valuable insights that guide clinicians in selecting and applying zirconia materials to meet both esthetic and functional requirements in restorative dentistry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信