In Vitro Bacterial Growth on Titanium Surfaces Treated with Nanosized Hydroxyapatite.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Maria Holmström, Sonia Esko, Karin Danielsson, Per Kjellin
{"title":"In Vitro Bacterial Growth on Titanium Surfaces Treated with Nanosized Hydroxyapatite.","authors":"Maria Holmström, Sonia Esko, Karin Danielsson, Per Kjellin","doi":"10.3390/jfb16020066","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial growth on implant surfaces poses a significant obstacle to the long-term success of dental and orthopedic implants. There is a need for implants that promote osseointegration while at the same time decreasing or preventing bacterial growth. In this study, the existing methods for the measurement of bacterial biofilms were adapted so that they were suitable for measuring the bacterial growth on implant surfaces. Two different strains of bacteria, <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus epidermidis,</i> were used, and the in vitro effect of bacterial growth on titanium surfaces coated with an ultrathin (20-40 nm thick) layer of nanosized hydroxyapatite (nHA) was investigated. After 2 h of biofilm growth, there was a 33% reduction in both <i>S. epidermidis</i> and <i>P. aeruginosa</i> bacteria on nHA compared to Ti. For a more mature 24 h biofilm, there was a 46% reduction in <i>S. epidermidis</i> and a 43% reduction in <i>P. aeruginosa</i> on nHA compared to Ti. This shows that coating nHA onto implants could be of benefit in reducing implant-related infections.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020066","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial growth on implant surfaces poses a significant obstacle to the long-term success of dental and orthopedic implants. There is a need for implants that promote osseointegration while at the same time decreasing or preventing bacterial growth. In this study, the existing methods for the measurement of bacterial biofilms were adapted so that they were suitable for measuring the bacterial growth on implant surfaces. Two different strains of bacteria, Pseudomonas aeruginosa and Staphylococcus epidermidis, were used, and the in vitro effect of bacterial growth on titanium surfaces coated with an ultrathin (20-40 nm thick) layer of nanosized hydroxyapatite (nHA) was investigated. After 2 h of biofilm growth, there was a 33% reduction in both S. epidermidis and P. aeruginosa bacteria on nHA compared to Ti. For a more mature 24 h biofilm, there was a 46% reduction in S. epidermidis and a 43% reduction in P. aeruginosa on nHA compared to Ti. This shows that coating nHA onto implants could be of benefit in reducing implant-related infections.

细菌在纳米羟基磷灰石处理过的钛表面上的体外生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信