Antanas Straksys, Adei Abouhagger, Monika Kirsnytė-Šniokė, Tatjana Kavleiskaja, Arunas Stirke, Wanessa C M A Melo
{"title":"Development and Characterization of a Gelatin-Based Photoactive Hydrogel for Biomedical Application.","authors":"Antanas Straksys, Adei Abouhagger, Monika Kirsnytė-Šniokė, Tatjana Kavleiskaja, Arunas Stirke, Wanessa C M A Melo","doi":"10.3390/jfb16020043","DOIUrl":null,"url":null,"abstract":"<p><p>Photoactive hydrogels facilitate light-triggered photochemical processes, positioning them as innovative solutions in biomedical applications, especially in antimicrobial photodynamic therapy. This study presents a novel methylene blue-based photoactive hydrogel designed as a topical gel solution to overcome the limitations of traditional pad-based systems by offering enhanced adaptability to irregular wound surfaces, uniform photosensitizer distribution, and deeper therapeutic light penetration. This study investigated the development of hydrogels by cross-linking gelatin with glutaraldehyde (GA) and incorporating methylene blue (MB) to investigate the effects of cross-linking density, network structure, and small molecule inclusion on hydrogel properties. The results showed that while glutaraldehyde concentration influenced swelling behavior and network structure, the inclusion of MB altered these properties, particularly reducing swelling and MB retention at higher GA concentrations. Rheological and thermal analyses confirmed that higher GA concentrations made the hydrogels more rigid, with MB influencing both mechanical and thermal properties. Additionally, the hydrogels exhibited enhanced antimicrobial properties through increased reactive oxygen species production, particularly in light-activated conditions, demonstrating the potential of MB-based photoactive hydrogels for improving antimicrobial efficacy, especially against <i>S. aureus</i>, <i>E. coli</i>, and <i>C. albicans</i>, offering as a possible alternative to traditional antimicrobial treatments.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photoactive hydrogels facilitate light-triggered photochemical processes, positioning them as innovative solutions in biomedical applications, especially in antimicrobial photodynamic therapy. This study presents a novel methylene blue-based photoactive hydrogel designed as a topical gel solution to overcome the limitations of traditional pad-based systems by offering enhanced adaptability to irregular wound surfaces, uniform photosensitizer distribution, and deeper therapeutic light penetration. This study investigated the development of hydrogels by cross-linking gelatin with glutaraldehyde (GA) and incorporating methylene blue (MB) to investigate the effects of cross-linking density, network structure, and small molecule inclusion on hydrogel properties. The results showed that while glutaraldehyde concentration influenced swelling behavior and network structure, the inclusion of MB altered these properties, particularly reducing swelling and MB retention at higher GA concentrations. Rheological and thermal analyses confirmed that higher GA concentrations made the hydrogels more rigid, with MB influencing both mechanical and thermal properties. Additionally, the hydrogels exhibited enhanced antimicrobial properties through increased reactive oxygen species production, particularly in light-activated conditions, demonstrating the potential of MB-based photoactive hydrogels for improving antimicrobial efficacy, especially against S. aureus, E. coli, and C. albicans, offering as a possible alternative to traditional antimicrobial treatments.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.