Yuandong Liu, Youzhi Liu, Haoqin Yang, Longbo Zhang, Kai Che, Linlin Xing
{"title":"NTMFF-DTA: Prediction of Drug-Target Affinity Based on Network Topology and Multi-feature Fusion.","authors":"Yuandong Liu, Youzhi Liu, Haoqin Yang, Longbo Zhang, Kai Che, Linlin Xing","doi":"10.1007/s12539-025-00692-9","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting drug-target binding affinity (DTA) is an important step in the complex process of drug discovery or drug repositioning. A large number of computational methods proposed for the task of DTA prediction utilize single features of proteins to measure drug-protein or protein-protein interactions, ignoring multi-feature fusion between protein-related features (e.g., solvent accessibility, protein pockets, secondary structures, and distance maps, etc.). To address the aforementioned constraints, we propose a new network topology and multi-feature fusion based approach for DTA prediction (NTMFF-DTA), which deeply mines protein multiple types of data and propagates drug information across domains. Data in drug-target interactions are often sparse, and multi-feature fusion can enrich data information by integrating multiple features, thus overcoming the data sparsity problem to some extent. The proposed approach offers two main contributions: (1) constructing a relationship-aware GAT that selectively focuses on the connections between nodes and edges in the molecular graph to capture the more central roles of nodes and edges in DTA prediction and (2) constructing an information propagation channel between different feature domains of drug proteins to achieve the sharing of the importance weight of drug atoms and edges, and combining with a multi-head self-attention mechanism to capture residue-enhancing features. The NTMFF-DTA model was comparatively tested against several leading baseline technologies on commonly used datasets. Experimental show that NTMFF-DTA can effectively and accurately predict DTA and outperform existing comparative models.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00692-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting drug-target binding affinity (DTA) is an important step in the complex process of drug discovery or drug repositioning. A large number of computational methods proposed for the task of DTA prediction utilize single features of proteins to measure drug-protein or protein-protein interactions, ignoring multi-feature fusion between protein-related features (e.g., solvent accessibility, protein pockets, secondary structures, and distance maps, etc.). To address the aforementioned constraints, we propose a new network topology and multi-feature fusion based approach for DTA prediction (NTMFF-DTA), which deeply mines protein multiple types of data and propagates drug information across domains. Data in drug-target interactions are often sparse, and multi-feature fusion can enrich data information by integrating multiple features, thus overcoming the data sparsity problem to some extent. The proposed approach offers two main contributions: (1) constructing a relationship-aware GAT that selectively focuses on the connections between nodes and edges in the molecular graph to capture the more central roles of nodes and edges in DTA prediction and (2) constructing an information propagation channel between different feature domains of drug proteins to achieve the sharing of the importance weight of drug atoms and edges, and combining with a multi-head self-attention mechanism to capture residue-enhancing features. The NTMFF-DTA model was comparatively tested against several leading baseline technologies on commonly used datasets. Experimental show that NTMFF-DTA can effectively and accurately predict DTA and outperform existing comparative models.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.