Levi M Olevsky, Mason G Jacques, Katherine R Hixon
{"title":"PoreVision: A Program for Enhancing Efficiency and Accuracy in SEM Pore Analyses of Gels and Other Porous Materials.","authors":"Levi M Olevsky, Mason G Jacques, Katherine R Hixon","doi":"10.3390/gels11020132","DOIUrl":null,"url":null,"abstract":"<p><p>Porous gels are frequently utilized as cell scaffolds in tissue engineering. Previous studies have highlighted the significance of scaffold pore size and pore orientation in influencing cell migration and differentiation. Moreover, there exists a considerable body of research focused on optimizing pore characteristics to enhance scaffold performance. However, current methods for numerical pore characterization typically involve expensive machines or manual size measurements using image manipulation software. In this project, our objective is to develop a user-friendly, versatile, and freely accessible software tool using Python scripting. This tool aims to streamline and objectify pore characterization, thereby accelerating research efforts and providing a standardized framework for researchers working with porous gels. Our group found that first-time users of PoreVision and ImageJ take similar amounts of time to use both programs; however, PoreVision is capable of handling larger datasets with reduced variability. Further, PoreVision users exhibited lower variability in area and orientation measurements compared to ImageJ, while perimeter variability was similar between the two. PoreVision showed higher variability in average measurements, likely due to its larger sample size and broader range of pore sizes, which may be missed in ImageJ's manual scanning approach. By facilitating quantitative analysis of pore size, shape, and orientation, our software tool will contribute to a more comprehensive understanding of scaffold properties and their impact on cellular behavior. Ultimately, we aim to aid researchers in the field of tissue engineering with a user-friendly tool that enhances the reproducibility and reliability of pore characterization analyses.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11020132","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Porous gels are frequently utilized as cell scaffolds in tissue engineering. Previous studies have highlighted the significance of scaffold pore size and pore orientation in influencing cell migration and differentiation. Moreover, there exists a considerable body of research focused on optimizing pore characteristics to enhance scaffold performance. However, current methods for numerical pore characterization typically involve expensive machines or manual size measurements using image manipulation software. In this project, our objective is to develop a user-friendly, versatile, and freely accessible software tool using Python scripting. This tool aims to streamline and objectify pore characterization, thereby accelerating research efforts and providing a standardized framework for researchers working with porous gels. Our group found that first-time users of PoreVision and ImageJ take similar amounts of time to use both programs; however, PoreVision is capable of handling larger datasets with reduced variability. Further, PoreVision users exhibited lower variability in area and orientation measurements compared to ImageJ, while perimeter variability was similar between the two. PoreVision showed higher variability in average measurements, likely due to its larger sample size and broader range of pore sizes, which may be missed in ImageJ's manual scanning approach. By facilitating quantitative analysis of pore size, shape, and orientation, our software tool will contribute to a more comprehensive understanding of scaffold properties and their impact on cellular behavior. Ultimately, we aim to aid researchers in the field of tissue engineering with a user-friendly tool that enhances the reproducibility and reliability of pore characterization analyses.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.