Temperature-Responsive Micro-Cross-Linking: A Novel Solution for Enhancing High-Temperature Viscosity and Settlement Stability of High-Density Cement Slurry.
Lifang Song, Chengwen Wang, Jingping Liu, Dingye Li
{"title":"Temperature-Responsive Micro-Cross-Linking: A Novel Solution for Enhancing High-Temperature Viscosity and Settlement Stability of High-Density Cement Slurry.","authors":"Lifang Song, Chengwen Wang, Jingping Liu, Dingye Li","doi":"10.3390/gels11020138","DOIUrl":null,"url":null,"abstract":"<p><p>In order to solve the problem of solid-phase particle settlement of high-density cement paste used in deep/ultra-deep wells, a temperature-responsive micro-cross-linking method was innovatively adopted to increase the viscosity and settlement stability of high-density cement paste at high temperatures. Through the self-developed suspension stabilizer and cross-linking agent to form micro-cross-linking gel at high temperature, the increase in high-temperature viscosity of cement paste was successfully realized without increasing the low-temperature viscosity of cement paste. Moreover, this micro-cross-linking reaction, together with the hydrophobic binding effect of the suspension stabilizer, strengthened the filamentary linkage network structure in the polymer solution with the formation of a lamellar linkage network structure. This effectively compensated for the decrease in viscosity of the polymer solution with increasing temperature. The results show that the micro-cross-linked system can be successfully cross-linked at elevated temperatures of 120-220 °C in pH 8-13 and salt content of 0-10%. The viscosity of the micro-cross-linked system was 144.5 mPa·s after 20 min at 220 °C with a shear rate of 170 s<sup>-1</sup>, which was 91% higher than the viscosity of the un-cross-linked system. After curing at 220 °C, the density difference between the top and bottom of the high-density cement was 0.025 g/cm<sup>3</sup>, which was 84% lower than the un-cross-linked system. This helped the high-density cement slurry to maintain the homogeneity of the components at high temperatures and ensured the high-temperature consistency and suspension stability of the slurry. This study helps to improve the cementing effect of deep/ultra-deep wells and provides a new method to solve the problems of cement slurry settlement and destabilization under high-temperature and high-pressure well conditions.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11020138","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the problem of solid-phase particle settlement of high-density cement paste used in deep/ultra-deep wells, a temperature-responsive micro-cross-linking method was innovatively adopted to increase the viscosity and settlement stability of high-density cement paste at high temperatures. Through the self-developed suspension stabilizer and cross-linking agent to form micro-cross-linking gel at high temperature, the increase in high-temperature viscosity of cement paste was successfully realized without increasing the low-temperature viscosity of cement paste. Moreover, this micro-cross-linking reaction, together with the hydrophobic binding effect of the suspension stabilizer, strengthened the filamentary linkage network structure in the polymer solution with the formation of a lamellar linkage network structure. This effectively compensated for the decrease in viscosity of the polymer solution with increasing temperature. The results show that the micro-cross-linked system can be successfully cross-linked at elevated temperatures of 120-220 °C in pH 8-13 and salt content of 0-10%. The viscosity of the micro-cross-linked system was 144.5 mPa·s after 20 min at 220 °C with a shear rate of 170 s-1, which was 91% higher than the viscosity of the un-cross-linked system. After curing at 220 °C, the density difference between the top and bottom of the high-density cement was 0.025 g/cm3, which was 84% lower than the un-cross-linked system. This helped the high-density cement slurry to maintain the homogeneity of the components at high temperatures and ensured the high-temperature consistency and suspension stability of the slurry. This study helps to improve the cementing effect of deep/ultra-deep wells and provides a new method to solve the problems of cement slurry settlement and destabilization under high-temperature and high-pressure well conditions.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.