Hippocampal vascularization pattern and cerebral blood flow cooperatively modulate hippocampal tolerable amount of Aβ deposition in the occurrence of MCI.
Yuhao Xu, Hong Wei, Rui Du, Ranchao Wang, Yan Zhu, Tian Zhao, Xiaolan Zhu, Yuefeng Li
{"title":"Hippocampal vascularization pattern and cerebral blood flow cooperatively modulate hippocampal tolerable amount of Aβ deposition in the occurrence of MCI.","authors":"Yuhao Xu, Hong Wei, Rui Du, Ranchao Wang, Yan Zhu, Tian Zhao, Xiaolan Zhu, Yuefeng Li","doi":"10.1186/s12987-025-00635-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aβ deposition in the brain does not necessarily lead to cognitive impairment, and that blood supply may have other unexplained regulatory effects on Aβ. Therefore, there appears to be a more complex relationship between blood supply, Aβ deposition, and cognitive impairment that warrants further exploration.</p><p><strong>Methods: </strong>This cohort study collected four longitudinal follow-up datasets, including a total of 281 subjects, followed for four years. Three-dimensional time-of-flight angiography and pseudo-continuous arterial spin labeling were used to assess hippocampal vascularization pattern (VP) and hippocampal cerebral blood flow (CBF). 11 C-Pittsburgh compound B (PiB)-PET/CT-based spatial measurements were used detect hippocampal PiB uptake as a reflection of hippocampal Aβ deposition. We explored the relationships between hippocampal blood supply (VP and CBF), hippocampal PiB uptake, and the occurrence of mild cognitive impairment (MCI) using a generalized nonlinear model.</p><p><strong>Results: </strong>We demonstrated the synergistic effect of hippocampal VP and CBF on predicting the occurrence of MCI. We conducted confirmation and quantification of the relationship between hippocampal blood supply and hippocampal PiB uptake. Additionally, the predicted value of PiB uptake based on hippocampal blood supply not only exhibited strong predictive efficacy for the occurrence of MCI (AUC = 0.831, p < 0.001), but was also validated in cerebral small vessel disease cohorts (AUC = 0.792, p < 0.001) and well validated in an independent cohort (Kappa = 0.741, p < 0.001).</p><p><strong>Conclusions: </strong>Overall, we reveal that hippocampal blood supply at baseline can regulate hippocampal PiB uptake, which reflects hippocampal tolerable amount of Aβ deposition and serves as an effective predictor for the occurrence of MCI, providing an important extension on the relationship between hippocampal blood supply and Aβ deposition.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"22"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00635-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Aβ deposition in the brain does not necessarily lead to cognitive impairment, and that blood supply may have other unexplained regulatory effects on Aβ. Therefore, there appears to be a more complex relationship between blood supply, Aβ deposition, and cognitive impairment that warrants further exploration.
Methods: This cohort study collected four longitudinal follow-up datasets, including a total of 281 subjects, followed for four years. Three-dimensional time-of-flight angiography and pseudo-continuous arterial spin labeling were used to assess hippocampal vascularization pattern (VP) and hippocampal cerebral blood flow (CBF). 11 C-Pittsburgh compound B (PiB)-PET/CT-based spatial measurements were used detect hippocampal PiB uptake as a reflection of hippocampal Aβ deposition. We explored the relationships between hippocampal blood supply (VP and CBF), hippocampal PiB uptake, and the occurrence of mild cognitive impairment (MCI) using a generalized nonlinear model.
Results: We demonstrated the synergistic effect of hippocampal VP and CBF on predicting the occurrence of MCI. We conducted confirmation and quantification of the relationship between hippocampal blood supply and hippocampal PiB uptake. Additionally, the predicted value of PiB uptake based on hippocampal blood supply not only exhibited strong predictive efficacy for the occurrence of MCI (AUC = 0.831, p < 0.001), but was also validated in cerebral small vessel disease cohorts (AUC = 0.792, p < 0.001) and well validated in an independent cohort (Kappa = 0.741, p < 0.001).
Conclusions: Overall, we reveal that hippocampal blood supply at baseline can regulate hippocampal PiB uptake, which reflects hippocampal tolerable amount of Aβ deposition and serves as an effective predictor for the occurrence of MCI, providing an important extension on the relationship between hippocampal blood supply and Aβ deposition.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).