Bone Remodeling Around Implants with Different Macro-Design Placed in Post-Extraction Sockets: A Cone-Beam Computed Tomography (CBCT) Randomized Controlled Clinical Trial (RCT).

IF 2.5 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Roberta Grassi, Fábio França Vieira E Silva, Gennaro Musella, Francesco Pettini, Gisela Cristina Vianna Camolesi, Martina Coppini, Stefania Cantore
{"title":"Bone Remodeling Around Implants with Different Macro-Design Placed in Post-Extraction Sockets: A Cone-Beam Computed Tomography (CBCT) Randomized Controlled Clinical Trial (RCT).","authors":"Roberta Grassi, Fábio França Vieira E Silva, Gennaro Musella, Francesco Pettini, Gisela Cristina Vianna Camolesi, Martina Coppini, Stefania Cantore","doi":"10.3390/dj13020078","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Immediate post-extraction dental implants are increasingly popular, but ensuring primary stability and managing peri-implant tissues remain challenging. Implant macro-design significantly impacts stability and osseointegration. This study used Cone-beam Computed Tomography (CBCT) to evaluate changes in alveolar bone following immediate placement of two implant designs, System 2P and Dura-Vit 3P, which feature semi-conical microgeometry and apical self-tapping portions for improved stability and bone regeneration. <b>Methods:</b> With a 1:1 allocation ratio, the current investigation was a two-arm parallel group randomized clinical trial. Patients qualified if they required immediate dental replacements with adequate buccal bone support. Two types of implants were placed: System 2P (cylindrical shape) and Dura-Vit 3P (more conical shape, with a particular architecture of threads). Following the intervention, CBCT was performed both immediately (T1) and six months later (T2). Measurements of CBCT horizontal bone level at apical, medial, and bevel height on the palatal/lingual and vestibular sides as well as the buccal vertical gap were the primary results. Complications, implant stability quotient (ISQ), and torque insertion were evaluated. The Mann-Whitney test was used to determine time-based differences within each group, while the Wilcoxon test was used to estimate differences between groups. The impact of baseline marginal gap dimension and gingival biotype was estimated using multiple regressions. <b>Results:</b> Thirty patients were recruited and randomized to treatments, with two lost to follow-up. One System 2P implant failed and two patients of the Dura-Vit 3P group dropped out. At T1, the Dura-Vit 3P group exhibited a lower mean insertion torque and a higher ISQ than the System 2P group. Furthermore, the Dura-Vit 3P group showed lower bone reduction compared to System 2P at horizontal and vertical measurements with significant differences for the vestibular and palatal base and medial level (<i>p</i>-values < 0.05). Regression models indicated a positive effect of thick biotypes on gap filling and dimensional bone reduction. No complications were observed in both groups. <b>Conclusions:</b> The Dura-Vit 3P implant exhibits high primary stability when inserted in post-extraction sites. Furthermore, this kind of implant stimulates higher bone stability on both the palatal and buccal side when compared to the System 2P implant. The present findings support the evidence that the macro-design of the Dura-Vit 3P implant promotes increased primary stability and reduces bone loss.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13020078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Immediate post-extraction dental implants are increasingly popular, but ensuring primary stability and managing peri-implant tissues remain challenging. Implant macro-design significantly impacts stability and osseointegration. This study used Cone-beam Computed Tomography (CBCT) to evaluate changes in alveolar bone following immediate placement of two implant designs, System 2P and Dura-Vit 3P, which feature semi-conical microgeometry and apical self-tapping portions for improved stability and bone regeneration. Methods: With a 1:1 allocation ratio, the current investigation was a two-arm parallel group randomized clinical trial. Patients qualified if they required immediate dental replacements with adequate buccal bone support. Two types of implants were placed: System 2P (cylindrical shape) and Dura-Vit 3P (more conical shape, with a particular architecture of threads). Following the intervention, CBCT was performed both immediately (T1) and six months later (T2). Measurements of CBCT horizontal bone level at apical, medial, and bevel height on the palatal/lingual and vestibular sides as well as the buccal vertical gap were the primary results. Complications, implant stability quotient (ISQ), and torque insertion were evaluated. The Mann-Whitney test was used to determine time-based differences within each group, while the Wilcoxon test was used to estimate differences between groups. The impact of baseline marginal gap dimension and gingival biotype was estimated using multiple regressions. Results: Thirty patients were recruited and randomized to treatments, with two lost to follow-up. One System 2P implant failed and two patients of the Dura-Vit 3P group dropped out. At T1, the Dura-Vit 3P group exhibited a lower mean insertion torque and a higher ISQ than the System 2P group. Furthermore, the Dura-Vit 3P group showed lower bone reduction compared to System 2P at horizontal and vertical measurements with significant differences for the vestibular and palatal base and medial level (p-values < 0.05). Regression models indicated a positive effect of thick biotypes on gap filling and dimensional bone reduction. No complications were observed in both groups. Conclusions: The Dura-Vit 3P implant exhibits high primary stability when inserted in post-extraction sites. Furthermore, this kind of implant stimulates higher bone stability on both the palatal and buccal side when compared to the System 2P implant. The present findings support the evidence that the macro-design of the Dura-Vit 3P implant promotes increased primary stability and reduces bone loss.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dentistry Journal
Dentistry Journal Dentistry-Dentistry (all)
CiteScore
3.70
自引率
7.70%
发文量
213
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信