Therapeutic Effect of Rosolic Acid against Endothelial Dysfunction in Diabetic Wistar Rats.

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karan Naresh Amin, Kunka Mohanram Ramkumar
{"title":"Therapeutic Effect of Rosolic Acid against Endothelial Dysfunction in Diabetic Wistar Rats.","authors":"Karan Naresh Amin, Kunka Mohanram Ramkumar","doi":"10.2174/0109298673358006250213053647","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Endothelial dysfunction (ED) results from impaired vascular endothelial cell function, disrupting key processes such as hemostasis, vascular tone regulation, vasculogenesis, angiogenesis, and inflammation. These processes are mediated by a complex signaling network involving hormones, cytokines, and chemokines. ED is recognized as a major contributor to the onset and progression of several micro- and macrovascular diseases, including diabetes. Our previous study demonstrated that the polyphenol Rosolic acid (RA) protects against ER stress-induced ED in vitro by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, RA enhanced the proliferation and survival of pancreatic β-cells in a co-culture model with endothelial cells under ER stress conditions.</p><p><strong>Methods: </strong>In this study, we investigated RA's protective effects against diabetes-induced ED using high-fat diet (HFD)-fed and streptozotocin-induced type-2 diabetic rat models. We evaluated RA's impact on vascular function and metabolic parameters in these models.</p><p><strong>Results: </strong>RA significantly mitigated diabetes-induced ED in the aortic tissues of HFDfed diabetic Wistar rats. RA treatment improved glucose tolerance and reduced hyperlipidemia, showing efficacy comparable to the anti-diabetic drug Gliclazide. Moreover, RA elevated Nrf2 levels and its downstream target genes in aortic tissues while reducing ED markers such as ICAM-1, VCAM-1, and endothelin-1.</p><p><strong>Conclusion: </strong>These findings highlight RA as a promising therapeutic agent for diabetes and its associated vascular complications, with potential for broader clinical applications.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673358006250213053647","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Endothelial dysfunction (ED) results from impaired vascular endothelial cell function, disrupting key processes such as hemostasis, vascular tone regulation, vasculogenesis, angiogenesis, and inflammation. These processes are mediated by a complex signaling network involving hormones, cytokines, and chemokines. ED is recognized as a major contributor to the onset and progression of several micro- and macrovascular diseases, including diabetes. Our previous study demonstrated that the polyphenol Rosolic acid (RA) protects against ER stress-induced ED in vitro by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, RA enhanced the proliferation and survival of pancreatic β-cells in a co-culture model with endothelial cells under ER stress conditions.

Methods: In this study, we investigated RA's protective effects against diabetes-induced ED using high-fat diet (HFD)-fed and streptozotocin-induced type-2 diabetic rat models. We evaluated RA's impact on vascular function and metabolic parameters in these models.

Results: RA significantly mitigated diabetes-induced ED in the aortic tissues of HFDfed diabetic Wistar rats. RA treatment improved glucose tolerance and reduced hyperlipidemia, showing efficacy comparable to the anti-diabetic drug Gliclazide. Moreover, RA elevated Nrf2 levels and its downstream target genes in aortic tissues while reducing ED markers such as ICAM-1, VCAM-1, and endothelin-1.

Conclusion: These findings highlight RA as a promising therapeutic agent for diabetes and its associated vascular complications, with potential for broader clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信