Revealing the molecular interplay of coverage, wettability, and capacitive response at the Pt(111)-water solution interface under bias.

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Federico Raffone, Rémi Khatib, Marialore Sulpizi, Clotilde Cucinotta
{"title":"Revealing the molecular interplay of coverage, wettability, and capacitive response at the Pt(111)-water solution interface under bias.","authors":"Federico Raffone, Rémi Khatib, Marialore Sulpizi, Clotilde Cucinotta","doi":"10.1038/s42004-025-01446-w","DOIUrl":null,"url":null,"abstract":"<p><p>While electrified interfaces are crucial for electrocatalysis and corrosion, their molecular morphology remains largely unknown. Through highly realistic ab initio molecular dynamics simulations of the Pt(111)-water solution interface in reducing conditions, we reveal a deep interconnection among electrode coverage, wettability, capacitive response, and catalytic activity. We identify computationally the experimentally hypothesised states for adsorbed hydrogen on Pt, H<sub>UPD</sub> and H<sub>OPD</sub>, revealing their role in governing interfacial water reorientation and hydrogen evolution. The transition between these two H states with increasing potential, induces a shift from a hydrophobic to a hydrophilic interface and correlates with a change in the primary electrode screening mechanism. This results in a slope change in differential capacitance, marking the onset of the experimentally observed peak around the potential of zero charge. Our work produces crucial insights for advancing electrocatalytic energy conversion, developing deep understanding of electrified interfaces.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"58"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01446-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While electrified interfaces are crucial for electrocatalysis and corrosion, their molecular morphology remains largely unknown. Through highly realistic ab initio molecular dynamics simulations of the Pt(111)-water solution interface in reducing conditions, we reveal a deep interconnection among electrode coverage, wettability, capacitive response, and catalytic activity. We identify computationally the experimentally hypothesised states for adsorbed hydrogen on Pt, HUPD and HOPD, revealing their role in governing interfacial water reorientation and hydrogen evolution. The transition between these two H states with increasing potential, induces a shift from a hydrophobic to a hydrophilic interface and correlates with a change in the primary electrode screening mechanism. This results in a slope change in differential capacitance, marking the onset of the experimentally observed peak around the potential of zero charge. Our work produces crucial insights for advancing electrocatalytic energy conversion, developing deep understanding of electrified interfaces.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信