Edvin Purić, Mujtaba Hassan, Fredrik Sjövall, Tihomir Tomašič, Mojca Pevec, Jurij Lah, Jaume Adrover Forteza, Anders Sundin, Hakon Leffler, Ulf J Nilsson, Derek T Logan, Marko Anderluh
{"title":"Nanomolar inhibitor of the galectin-8 N-terminal domain binds via a non-canonical cation-π interaction.","authors":"Edvin Purić, Mujtaba Hassan, Fredrik Sjövall, Tihomir Tomašič, Mojca Pevec, Jurij Lah, Jaume Adrover Forteza, Anders Sundin, Hakon Leffler, Ulf J Nilsson, Derek T Logan, Marko Anderluh","doi":"10.1038/s42004-025-01458-6","DOIUrl":null,"url":null,"abstract":"<p><p>Galectin-8 is a tandem-repeat galectin consisting of two distinct carbohydrate recognition domains and is a potential drug target. We have developed a library of galectin-8N inhibitors that exhibit high nanomolar K<sub>d</sub> values as determined by a competitive fluorescence polarization assay. A detailed thermodynamic analysis of the binding of D-galactosides to galectin-8N by isothermal titration calorimetry reveals important differences in enthalpic and/or entropic contributions to binding. Contrary to expectations, the binding of 2-O-propargyl-D-galactoside was found to strongly increase the binding enthalpy, whereas the binding of 2-O-carboxymethylene-D-galactoside was surprisingly less enthalpy-driven. The results of our work suggest that the ethynyl group can successfully replace the carboxylate group when targeting the water-exposed guanidine moiety of a critical arginine residue. This results in only a minor loss of affinity and an adjusted enthalpic contribution to the overall binding due to non-canonical cation-π interactions, as evidenced by the obtained crystal structure of 2-O-propargyl-D-galactoside in complex with the N-terminal domain of galectin-8. Such an interaction has neither been identified nor discussed to date in a small-molecule ligand-protein complex.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"59"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01458-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Galectin-8 is a tandem-repeat galectin consisting of two distinct carbohydrate recognition domains and is a potential drug target. We have developed a library of galectin-8N inhibitors that exhibit high nanomolar Kd values as determined by a competitive fluorescence polarization assay. A detailed thermodynamic analysis of the binding of D-galactosides to galectin-8N by isothermal titration calorimetry reveals important differences in enthalpic and/or entropic contributions to binding. Contrary to expectations, the binding of 2-O-propargyl-D-galactoside was found to strongly increase the binding enthalpy, whereas the binding of 2-O-carboxymethylene-D-galactoside was surprisingly less enthalpy-driven. The results of our work suggest that the ethynyl group can successfully replace the carboxylate group when targeting the water-exposed guanidine moiety of a critical arginine residue. This results in only a minor loss of affinity and an adjusted enthalpic contribution to the overall binding due to non-canonical cation-π interactions, as evidenced by the obtained crystal structure of 2-O-propargyl-D-galactoside in complex with the N-terminal domain of galectin-8. Such an interaction has neither been identified nor discussed to date in a small-molecule ligand-protein complex.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.