{"title":"Rapid Screening and Effective Rabbit-Derived Fab Antibodies Production Based on Yeast Surface Display.","authors":"Weili Shen, Tingting Gong, Changli Shao","doi":"10.2174/0113862073352395250211052148","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antibodies have broad applications in various fields, such as biology and medicine. The screening and preparation of highly specific and sensitive antibodies are essential research areas. Several techniques for the preparation of mouse-derived antibodies have been developed, but limited studies on rabbit-derived antibodies with a broader antibody profile and easier humanization are reported.</p><p><strong>Objective: </strong>An improved yeast surface display technique was used for rapid screening of rabbitderived Fab antibodies.</p><p><strong>Method: </strong>After RNA extraction from peripheral rabbit blood, a cDNA library was obtained by reverse transcription. After recombinant vector construction, the expressed sequence in the form of Fab antibody structure was fused to the N-terminal end of Aga2p in the vector; a bidirectional promoter was inserted and successfully expressed in brewer's yeast EBY100. In addition, sequences, such as leucine zipper and inulinase signal peptide (INU), were inserted into the recombinant vector to improve the expression and stability of Fab antibody further.</p><p><strong>Results: </strong>A biotin-labeled salbutamol marker was synthesized, and two rabbit-derived salbutamol- Fab antibodies were screened in three weeks using fluorescence-activated cell sorting (FACS).</p><p><strong>Conclusion: </strong>After antigen-binding kinetic studies, the screened antibodies demonstrated good affinity and specificity.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073352395250211052148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Antibodies have broad applications in various fields, such as biology and medicine. The screening and preparation of highly specific and sensitive antibodies are essential research areas. Several techniques for the preparation of mouse-derived antibodies have been developed, but limited studies on rabbit-derived antibodies with a broader antibody profile and easier humanization are reported.
Objective: An improved yeast surface display technique was used for rapid screening of rabbitderived Fab antibodies.
Method: After RNA extraction from peripheral rabbit blood, a cDNA library was obtained by reverse transcription. After recombinant vector construction, the expressed sequence in the form of Fab antibody structure was fused to the N-terminal end of Aga2p in the vector; a bidirectional promoter was inserted and successfully expressed in brewer's yeast EBY100. In addition, sequences, such as leucine zipper and inulinase signal peptide (INU), were inserted into the recombinant vector to improve the expression and stability of Fab antibody further.
Results: A biotin-labeled salbutamol marker was synthesized, and two rabbit-derived salbutamol- Fab antibodies were screened in three weeks using fluorescence-activated cell sorting (FACS).
Conclusion: After antigen-binding kinetic studies, the screened antibodies demonstrated good affinity and specificity.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.