Isaac N Treves, Aaron K Kucyi, Anna O Tierney, Emma Balkind, Susan Whitfield-Gabrieli, Zev Schuman-Olivier, John D E Gabrieli, Christian A Webb
{"title":"Dynamic functional connectivity signatures of focused attention on the breath in adolescents.","authors":"Isaac N Treves, Aaron K Kucyi, Anna O Tierney, Emma Balkind, Susan Whitfield-Gabrieli, Zev Schuman-Olivier, John D E Gabrieli, Christian A Webb","doi":"10.1093/cercor/bhaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Breathing meditation typically consists of directing attention toward breathing and redirecting attention when the mind wanders. As yet, we do not have a full understanding of the neural mechanisms of breath attention, in particular, how large-scale network interactions may be different between breath attention and rest and how these interactions may be modulated during periods of on-task and off-task attention to the breath. One promising approach may be examining fMRI measures including static connectivity between brain regions as well as dynamic, time-varying brain states. In this study, we analyzed static and dynamic functional connectivity in 72 adolescents during a breath-counting task (BCT), leveraging physiological respiration data to detect objective on-task and off-task periods. During the BCT relative to rest, we identified increases in static connectivity within attention-direction and orienting networks and anticorrelations between attention networks and the DMN. Dynamic connectivity analysis revealed four distinct brain states, including a DMN-anticorrelated brain state, proportionally more present during the BCT than the rest. We found there were distinct brain state markers of (i) breathing tasks vs rest and (ii) momentary on-task vs off-task attention within the BCT, yet in this analysis, no identifiable brain states reflecting between-individual behavioral variability.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850302/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Breathing meditation typically consists of directing attention toward breathing and redirecting attention when the mind wanders. As yet, we do not have a full understanding of the neural mechanisms of breath attention, in particular, how large-scale network interactions may be different between breath attention and rest and how these interactions may be modulated during periods of on-task and off-task attention to the breath. One promising approach may be examining fMRI measures including static connectivity between brain regions as well as dynamic, time-varying brain states. In this study, we analyzed static and dynamic functional connectivity in 72 adolescents during a breath-counting task (BCT), leveraging physiological respiration data to detect objective on-task and off-task periods. During the BCT relative to rest, we identified increases in static connectivity within attention-direction and orienting networks and anticorrelations between attention networks and the DMN. Dynamic connectivity analysis revealed four distinct brain states, including a DMN-anticorrelated brain state, proportionally more present during the BCT than the rest. We found there were distinct brain state markers of (i) breathing tasks vs rest and (ii) momentary on-task vs off-task attention within the BCT, yet in this analysis, no identifiable brain states reflecting between-individual behavioral variability.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.