The dynamic regulatory network of stamens and pistils in papaya.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Tao Xiang, Yating Zhu, Yang Wang, Xi Chen, Zhibin Zhang, Juan Lai, Ping Zhou, Ray Ming, Jingjing Yue
{"title":"The dynamic regulatory network of stamens and pistils in papaya.","authors":"Tao Xiang, Yating Zhu, Yang Wang, Xi Chen, Zhibin Zhang, Juan Lai, Ping Zhou, Ray Ming, Jingjing Yue","doi":"10.1186/s12870-025-06242-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Papaya exhibits three sex types: female (XX), male (XY), and hermaphrodite (XY<sup>h</sup>), making it an unusual trioecious model for studying sex determination. A critical aspect of papaya sex determination is the pistil abortion in male flowers. However, the regulatory networks that control the development of pistils and stamens in papaya remain incompletely understood.</p><p><strong>Results: </strong>In this study, we identified three organ-specific clusters involved in papaya pistils and stamens development. We found that pistil development is primarily characterized by the significant expression of auxin-related genes, while the pistil abortion genes in males is mainly associated with cytokinin, gibberellin, and auxin pathways. Additionally, we constructed expression regulatory networks for the development of female pistils, aborted pistils and stamens in male flowers, revealing key regulatory genes and signaling pathways involved in papaya organ development. Furthermore, we systematically identified 65 members of the MADS-box gene family and 10 ABCDE subfamily MADS-box genes in papaya. By constructing a phylogenetic tree of the ABCDE subfamily, we uncovered gene contraction and expansion in papaya, providing an improved understanding of the developmental mechanisms and evolutionary history of papaya floral organs.</p><p><strong>Conclusions: </strong>These findings provide a robust framework for identifying candidate sex-determining genes and constructing the sex determination regulatory network in papaya, providing insights and genomic resources for papaya breeding.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"254"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06242-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Papaya exhibits three sex types: female (XX), male (XY), and hermaphrodite (XYh), making it an unusual trioecious model for studying sex determination. A critical aspect of papaya sex determination is the pistil abortion in male flowers. However, the regulatory networks that control the development of pistils and stamens in papaya remain incompletely understood.

Results: In this study, we identified three organ-specific clusters involved in papaya pistils and stamens development. We found that pistil development is primarily characterized by the significant expression of auxin-related genes, while the pistil abortion genes in males is mainly associated with cytokinin, gibberellin, and auxin pathways. Additionally, we constructed expression regulatory networks for the development of female pistils, aborted pistils and stamens in male flowers, revealing key regulatory genes and signaling pathways involved in papaya organ development. Furthermore, we systematically identified 65 members of the MADS-box gene family and 10 ABCDE subfamily MADS-box genes in papaya. By constructing a phylogenetic tree of the ABCDE subfamily, we uncovered gene contraction and expansion in papaya, providing an improved understanding of the developmental mechanisms and evolutionary history of papaya floral organs.

Conclusions: These findings provide a robust framework for identifying candidate sex-determining genes and constructing the sex determination regulatory network in papaya, providing insights and genomic resources for papaya breeding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信