{"title":"Investigation of trans-to-cis isomerization of cinnamic acid in Arabidopsis using stable-isotope-labeled cinnamic acid.","authors":"Kei Tsuzuki, Taiki Suzuki, Kotaro Nishiyama, Yoshiya Seto","doi":"10.1093/bbb/zbaf019","DOIUrl":null,"url":null,"abstract":"<p><p>Cinnamic acid (CA) is a widely distributed metabolite in plant species and is a precursor of many important plant molecules such as lignin and flavonoids. CA exists as both trans and cis isomers; the trans isomer is more common in nature. Previous reports have revealed that the cis isomer of CA (cis-CA) has auxin-like activity when exogenously applied. Moreover, cis-CA was found as the endogenous compound in planta. Here, we report the chemical synthesis of stable-isotope-labeled trans- and cis-CA. Using these labeled compounds as internal standards, we developed a quantification method of CA using LC-MS/MS. We identified cis-CA in diverse plant species, including liverwort, moss, and lycophyte implying an important role of cis-CA in the terrestrial plant kingdom.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cinnamic acid (CA) is a widely distributed metabolite in plant species and is a precursor of many important plant molecules such as lignin and flavonoids. CA exists as both trans and cis isomers; the trans isomer is more common in nature. Previous reports have revealed that the cis isomer of CA (cis-CA) has auxin-like activity when exogenously applied. Moreover, cis-CA was found as the endogenous compound in planta. Here, we report the chemical synthesis of stable-isotope-labeled trans- and cis-CA. Using these labeled compounds as internal standards, we developed a quantification method of CA using LC-MS/MS. We identified cis-CA in diverse plant species, including liverwort, moss, and lycophyte implying an important role of cis-CA in the terrestrial plant kingdom.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).