Numerical study of interstitial fluid flow behavior in osteons under dynamic loading.

IF 2.2 3区 医学 Q2 ORTHOPEDICS
Tianyu Liu, Baochuan Xiong, Xin Cui, Chunqiu Zhang
{"title":"Numerical study of interstitial fluid flow behavior in osteons under dynamic loading.","authors":"Tianyu Liu, Baochuan Xiong, Xin Cui, Chunqiu Zhang","doi":"10.1186/s12891-025-08425-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The porous structure in bone tissue is essential for maintaining the physiological functions and overall health of intraosseous cells. The lacunar-canalicular net (LCN), a microscopic porous structure within osteons, facilitates the transport of nutrients and signaling molecules through interstitial fluid flow. However, the transient behavior of fluid flow within these micro-pores under dynamic loading conditions remains insufficiently studied.</p><p><strong>Methods: </strong>The study constructs a fluid-solid coupling model including the Haversian canal, canaliculi, lacunae, and interstitial fluid, to examine interstitial fluid flow behavior within the LCN under dynamic loading with varying frequencies and amplitudes. The relationship between changes of LCN pore volume and fluid velocity, and pressure is researched.</p><p><strong>Results: </strong>The results demonstrate that increasing strain amplitude leads to significant changes of LCN pore volume within osteons. In a complete loading cycle, with the increase of compressive strain, the pore volume in the osteon gradually shrinks, and the pressure gradient in the LCN increases, which promotes the increase of interstitial fluid velocity. When the compressive strain reaches the peak value, the flow velocity also reaches the maximum. In the subsequent unloading process, the pore volume began to recover, the pressure gradient gradually decreased, the flow rate decreased accordingly, and finally returned to the steady state level. At a loading amplitude of 1000 µε, the pore volume within LCN decreases by 1.1‰. At load amplitudes of 1500 µε, 2000 µε, and 2500 µε, the pore volume decreases by 1.6‰, 2.2‰ and 2.7‰ respectively, and the average flow velocity at the center of the superficial lacuna is 1.36 times, 1.77 times, and 2.14 times that at 1000 µε, respectively. Additionally, at a loading amplitude of 1000 µε under three different loading frequencies, the average flow velocities at the center of the superficial bone lacuna are 0.60 μm/s, 1.04 μm/s, and 1.54 μm/s, respectively. This indicates that high-frequency and high-amplitude dynamic loading can promote more vigorous fluid flow and pressure fluctuations with changes in LCN pore volume.</p><p><strong>Conclusions: </strong>Dynamic mechanical loading can significantly enhance the interstitial fluid flow in LCN by the changes of LCN pore volume. and dynamic loading promoted fluid flow in shallow lacunae significantly higher than that in deep lacunae. The relationship between changes of LCN pore volume and interstitial fluid flow behavior has implications for drug delivery and bone tissue engineering research.</p>","PeriodicalId":9189,"journal":{"name":"BMC Musculoskeletal Disorders","volume":"26 1","pages":"187"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Musculoskeletal Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12891-025-08425-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The porous structure in bone tissue is essential for maintaining the physiological functions and overall health of intraosseous cells. The lacunar-canalicular net (LCN), a microscopic porous structure within osteons, facilitates the transport of nutrients and signaling molecules through interstitial fluid flow. However, the transient behavior of fluid flow within these micro-pores under dynamic loading conditions remains insufficiently studied.

Methods: The study constructs a fluid-solid coupling model including the Haversian canal, canaliculi, lacunae, and interstitial fluid, to examine interstitial fluid flow behavior within the LCN under dynamic loading with varying frequencies and amplitudes. The relationship between changes of LCN pore volume and fluid velocity, and pressure is researched.

Results: The results demonstrate that increasing strain amplitude leads to significant changes of LCN pore volume within osteons. In a complete loading cycle, with the increase of compressive strain, the pore volume in the osteon gradually shrinks, and the pressure gradient in the LCN increases, which promotes the increase of interstitial fluid velocity. When the compressive strain reaches the peak value, the flow velocity also reaches the maximum. In the subsequent unloading process, the pore volume began to recover, the pressure gradient gradually decreased, the flow rate decreased accordingly, and finally returned to the steady state level. At a loading amplitude of 1000 µε, the pore volume within LCN decreases by 1.1‰. At load amplitudes of 1500 µε, 2000 µε, and 2500 µε, the pore volume decreases by 1.6‰, 2.2‰ and 2.7‰ respectively, and the average flow velocity at the center of the superficial lacuna is 1.36 times, 1.77 times, and 2.14 times that at 1000 µε, respectively. Additionally, at a loading amplitude of 1000 µε under three different loading frequencies, the average flow velocities at the center of the superficial bone lacuna are 0.60 μm/s, 1.04 μm/s, and 1.54 μm/s, respectively. This indicates that high-frequency and high-amplitude dynamic loading can promote more vigorous fluid flow and pressure fluctuations with changes in LCN pore volume.

Conclusions: Dynamic mechanical loading can significantly enhance the interstitial fluid flow in LCN by the changes of LCN pore volume. and dynamic loading promoted fluid flow in shallow lacunae significantly higher than that in deep lacunae. The relationship between changes of LCN pore volume and interstitial fluid flow behavior has implications for drug delivery and bone tissue engineering research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Musculoskeletal Disorders
BMC Musculoskeletal Disorders 医学-风湿病学
CiteScore
3.80
自引率
8.70%
发文量
1017
审稿时长
3-6 weeks
期刊介绍: BMC Musculoskeletal Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of musculoskeletal disorders, as well as related molecular genetics, pathophysiology, and epidemiology. The scope of the Journal covers research into rheumatic diseases where the primary focus relates specifically to a component(s) of the musculoskeletal system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信