{"title":"Biomimicry-Based Design of Underground Cold Storage Facilities: Energy Efficiency and Sustainability.","authors":"Mugdha Kshirsagar, Sanjay Kulkarni, Ankush Kumar Meena, Danby Caetano D'costa, Aroushi Bhagwat, Md Irfanul Haque Siddiqui, Dan Dobrotă","doi":"10.3390/biomimetics10020122","DOIUrl":null,"url":null,"abstract":"<p><p>Underground cold storage gives rise to special challenges that require innovative solutions to ensure maximum energy efficiency. Conventional energy systems tend to be based on high energy use, so sustainable solutions are crucial. This study explores the novel idea of biomimetics and how it might be used in the planning and building of underground cold storage facilities as well as other infrastructure projects. Biomimetic strategies, inspired by termite mounds, gentoo penguin feathers, and beehive structures, are applied to minimize reliance on energy-intensive cooling systems. These natural models offer efficient thermal regulation, airflow optimization, and passive cooling mechanisms such as geothermal energy harvesting. The integration of naturally driven convection and ventilation ensures stable internal temperatures under varying conditions. Biomimicry was employed in Revit Architecture, coupled with structural optimization, to eliminate urban space's limitations and further increase energy efficiency. The analytical work for this paper utilized a set of formulas that represent heat flow, thermal resistance, R-value, thermal transmittance, U-value, solar absorption, and G-value. The results pointed to very good insulation, with exterior walls having an R-value of 10.2 m<sup>2</sup>K/W and U-value of 0.98 W/m<sup>2</sup>K. Among the chosen 3-layer ETFE cushion with a U-value of 1.96 W/m<sup>2</sup>K, with a G-value of 0.50, showed good heat regulation and daylight management. Furthermore, bagasse-cement composites with a very low thermal conductivity of 0.10-0.30 W/m·K provided good insulation. This research proposes a scalable and sustainable approach in the design of underground cold storage by merging modelling based on Revit with thermal simulations. Biomimicry has been demonstrated to have the potential for changing subterranean infrastructure, conserving energy consumption, and creating eco-friendly construction practices.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020122","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Underground cold storage gives rise to special challenges that require innovative solutions to ensure maximum energy efficiency. Conventional energy systems tend to be based on high energy use, so sustainable solutions are crucial. This study explores the novel idea of biomimetics and how it might be used in the planning and building of underground cold storage facilities as well as other infrastructure projects. Biomimetic strategies, inspired by termite mounds, gentoo penguin feathers, and beehive structures, are applied to minimize reliance on energy-intensive cooling systems. These natural models offer efficient thermal regulation, airflow optimization, and passive cooling mechanisms such as geothermal energy harvesting. The integration of naturally driven convection and ventilation ensures stable internal temperatures under varying conditions. Biomimicry was employed in Revit Architecture, coupled with structural optimization, to eliminate urban space's limitations and further increase energy efficiency. The analytical work for this paper utilized a set of formulas that represent heat flow, thermal resistance, R-value, thermal transmittance, U-value, solar absorption, and G-value. The results pointed to very good insulation, with exterior walls having an R-value of 10.2 m2K/W and U-value of 0.98 W/m2K. Among the chosen 3-layer ETFE cushion with a U-value of 1.96 W/m2K, with a G-value of 0.50, showed good heat regulation and daylight management. Furthermore, bagasse-cement composites with a very low thermal conductivity of 0.10-0.30 W/m·K provided good insulation. This research proposes a scalable and sustainable approach in the design of underground cold storage by merging modelling based on Revit with thermal simulations. Biomimicry has been demonstrated to have the potential for changing subterranean infrastructure, conserving energy consumption, and creating eco-friendly construction practices.