Biomechanical Optimization of the Human Bite Using Numerical Analysis Based on the Finite Element Method.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Maribel González-Martín, Paula Hermida-Cabrera, Aida Gutiérrez-Corrales, Eusebio Torres-Carranza, Gonzalo Ruiz-de-León, Berta García-Mira, Álvaro-José Martínez-González, Daniel Torres-Lagares, María-Ángeles Serrera-Figallo, José-Luis Gutiérrez-Pérez, María Baus-Domínguez
{"title":"Biomechanical Optimization of the Human Bite Using Numerical Analysis Based on the Finite Element Method.","authors":"Maribel González-Martín, Paula Hermida-Cabrera, Aida Gutiérrez-Corrales, Eusebio Torres-Carranza, Gonzalo Ruiz-de-León, Berta García-Mira, Álvaro-José Martínez-González, Daniel Torres-Lagares, María-Ángeles Serrera-Figallo, José-Luis Gutiérrez-Pérez, María Baus-Domínguez","doi":"10.3390/biomimetics10020080","DOIUrl":null,"url":null,"abstract":"<p><p>Biomechanical bite analysis is essential for understanding occlusal forces and their distribution, especially in the design and validation of dental prostheses. Although the finite element method (FEM) has been widely used to evaluate these forces, the existing models often lack accuracy due to simplified geometries and limited material properties.</p><p><strong>Methods: </strong>A detailed finite element model was developed using Abaqus Standard 2023 software (Dassault Systemes, Vélizy-Villacoublay, France), incorporating scanned 3D geometries of mandibular and maxillary bones. The model included cortical and cancellous bones (Young's modulus: 5.5 GPa and 13.7 GPa, respectively) and was adjusted to simulate bite forces of 220.7 N based on experimental data. Occlusal forces were evaluated using flexible connectors that replicate molar-to-molar interactions, and the stress state was analyzed in the maxillary and mandibular bones.</p><p><strong>Results: </strong>The FEM model consisted of 1.68 million elements, with mesh sizes of 1-1.5 mm in critical areas. Bite forces on the molars were consistent with clinical trials: first molar (59.3 N), second molar (34.4 N), and third molar (16.7 N). The results showed that the maximum principal stresses in the maxillary bones did not exceed ±5 MPa, validating the robustness of the model for biomechanical predictions.</p><p><strong>Conclusion: </strong>The developed model provides an accurate and validated framework for analyzing the distribution of occlusal forces in intact dentures. This approach allows the evaluation of complex prosthetic configurations and their biomechanical impact, optimizing future designs to reduce clinical complications and improve long-term outcomes. The integration of high-resolution FEM models with clinical data establishes a solid foundation for the development of predictive tools in restorative dentistry.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020080","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomechanical bite analysis is essential for understanding occlusal forces and their distribution, especially in the design and validation of dental prostheses. Although the finite element method (FEM) has been widely used to evaluate these forces, the existing models often lack accuracy due to simplified geometries and limited material properties.

Methods: A detailed finite element model was developed using Abaqus Standard 2023 software (Dassault Systemes, Vélizy-Villacoublay, France), incorporating scanned 3D geometries of mandibular and maxillary bones. The model included cortical and cancellous bones (Young's modulus: 5.5 GPa and 13.7 GPa, respectively) and was adjusted to simulate bite forces of 220.7 N based on experimental data. Occlusal forces were evaluated using flexible connectors that replicate molar-to-molar interactions, and the stress state was analyzed in the maxillary and mandibular bones.

Results: The FEM model consisted of 1.68 million elements, with mesh sizes of 1-1.5 mm in critical areas. Bite forces on the molars were consistent with clinical trials: first molar (59.3 N), second molar (34.4 N), and third molar (16.7 N). The results showed that the maximum principal stresses in the maxillary bones did not exceed ±5 MPa, validating the robustness of the model for biomechanical predictions.

Conclusion: The developed model provides an accurate and validated framework for analyzing the distribution of occlusal forces in intact dentures. This approach allows the evaluation of complex prosthetic configurations and their biomechanical impact, optimizing future designs to reduce clinical complications and improve long-term outcomes. The integration of high-resolution FEM models with clinical data establishes a solid foundation for the development of predictive tools in restorative dentistry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信