An Efficient Multi-Objective White Shark Algorithm.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Wenyan Guo, Yufan Qiang, Fang Dai, Junfeng Wang, Shenglong Li
{"title":"An Efficient Multi-Objective White Shark Algorithm.","authors":"Wenyan Guo, Yufan Qiang, Fang Dai, Junfeng Wang, Shenglong Li","doi":"10.3390/biomimetics10020112","DOIUrl":null,"url":null,"abstract":"<p><p>To balance the diversity and stringency of Pareto solutions in multi-objective optimization, this paper introduces a multi-objective White Shark Optimization algorithm (MONSWSO) tailored for multi-objective optimization. MONSWSO integrates non-dominated sorting and crowding distance into the White Shark Optimization framework to select the optimal solution within the population. The uniformity of the initial population is enhanced through a chaotic reverse initialization learning strategy. The adaptive updating of individual positions is facilitated by an elite-guided forgetting mechanism, which incorporates escape energy and eddy aggregation behavior inspired by marine organisms to improve exploration in key areas. To evaluate the effectiveness of MONSWSO, it is benchmarked against five state-of-the-art multi-objective algorithms using four metrics: inverse generation distance, spatial homogeneity, spatial distribution, and hypervolume on 27 typical problems, including 23 multi-objective functions and 4 multi-objective project examples. Furthermore, the practical application of MONSWSO is demonstrated through an example of optimizing the design of subway tunnel foundation pits. The comprehensive results reveal that MONSWSO outperforms the comparison algorithms, achieving impressive and satisfactory outcomes.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020112","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To balance the diversity and stringency of Pareto solutions in multi-objective optimization, this paper introduces a multi-objective White Shark Optimization algorithm (MONSWSO) tailored for multi-objective optimization. MONSWSO integrates non-dominated sorting and crowding distance into the White Shark Optimization framework to select the optimal solution within the population. The uniformity of the initial population is enhanced through a chaotic reverse initialization learning strategy. The adaptive updating of individual positions is facilitated by an elite-guided forgetting mechanism, which incorporates escape energy and eddy aggregation behavior inspired by marine organisms to improve exploration in key areas. To evaluate the effectiveness of MONSWSO, it is benchmarked against five state-of-the-art multi-objective algorithms using four metrics: inverse generation distance, spatial homogeneity, spatial distribution, and hypervolume on 27 typical problems, including 23 multi-objective functions and 4 multi-objective project examples. Furthermore, the practical application of MONSWSO is demonstrated through an example of optimizing the design of subway tunnel foundation pits. The comprehensive results reveal that MONSWSO outperforms the comparison algorithms, achieving impressive and satisfactory outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信