Yuyang Wei, Yijie Chen, Sihan Jia, Lingyun Yan, Luzheng Bi
{"title":"A Bioinspired Multi-Level Numerical Model of the Tibiofemoral Joint for Biomechanical and Biomimetic Applications.","authors":"Yuyang Wei, Yijie Chen, Sihan Jia, Lingyun Yan, Luzheng Bi","doi":"10.3390/biomimetics10020119","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a comprehensive three-dimensional finite element (FE) model inspired by the biomechanics of the human knee, specifically the tibiofemoral joint during the gait cycle. Drawing from natural biological systems, the model integrates bio-inspired elements, including transversely isotropic materials, to replicate the anisotropic properties of ligaments and cartilage, along with anatomically realistic bone and meniscus structures. This dual-material approach ensures a physiologically accurate representation of knee mechanics under varying conditions. The model effectively captures key biomechanical parameters, including a maximum medial tibial cartilage contact pressure of 16.75 MPa at 25% of the stance phase and a maximum femoral cartilage pressure of 10.57 MPa at 75% of the stance phase. Furthermore, its strong correlation with in vivo and in vitro data highlights its potential for clinical applications in orthopedics, such as pre-surgical planning and post-operative assessments. By bridging the gap between biomechanics and bioinspired design, this research contributes significantly to the field of biomimetics and offers a robust simulation tool for enhancing joint protection strategies and optimizing implant designs.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a comprehensive three-dimensional finite element (FE) model inspired by the biomechanics of the human knee, specifically the tibiofemoral joint during the gait cycle. Drawing from natural biological systems, the model integrates bio-inspired elements, including transversely isotropic materials, to replicate the anisotropic properties of ligaments and cartilage, along with anatomically realistic bone and meniscus structures. This dual-material approach ensures a physiologically accurate representation of knee mechanics under varying conditions. The model effectively captures key biomechanical parameters, including a maximum medial tibial cartilage contact pressure of 16.75 MPa at 25% of the stance phase and a maximum femoral cartilage pressure of 10.57 MPa at 75% of the stance phase. Furthermore, its strong correlation with in vivo and in vitro data highlights its potential for clinical applications in orthopedics, such as pre-surgical planning and post-operative assessments. By bridging the gap between biomechanics and bioinspired design, this research contributes significantly to the field of biomimetics and offers a robust simulation tool for enhancing joint protection strategies and optimizing implant designs.