m6A regulator-based molecular classification and hub genes associated with immune infiltration characteristics and clinical outcomes in diffuse gliomas.

IF 2.1 4区 医学 Q3 GENETICS & HEREDITY
Jie Lu, Siyu Chen, Wanming Hu, Ke Sai, Depei Li, Pingping Jiang
{"title":"m6A regulator-based molecular classification and hub genes associated with immune infiltration characteristics and clinical outcomes in diffuse gliomas.","authors":"Jie Lu, Siyu Chen, Wanming Hu, Ke Sai, Depei Li, Pingping Jiang","doi":"10.1186/s12920-025-02104-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>m6A methylation modification is a new regulatory mechanism involved in tumorigenesis and tumor-immunity interaction. However, its impact on glioma immune microenvironment and clinical outcomes remains unclear.</p><p><strong>Methods: </strong>Comprehensive expression profiles of 18 m6A regulators were used to identify molecular subtypes exhibiting distinct m6A modification patterns in 1673 glioma samples sourced from public datasets. A multi-genes signature was constructed for predicting clinical outcomes and response to immunotherapy in glioma patients. Immunohistochemistry and cellular experiments were performed for validation.</p><p><strong>Results: </strong>Two m6A subtypes of gliomas were identified. The m6A-low-risk subtype was characterized by paucity of immune infiltrates; While the m6A-high-risk subtype had higher abundances of multiple immune cells including lymphocyte and macrophage as well as increased expression of PD-L1, corresponding to an immunosuppressive phenotype. The m6A-high-risk subtype had poorer survival than the m6A-low-risk subtype in both the glioblastoma and lower grade gliomas cohorts. Eight m6A-related hub genes of high prognostic significances were identified and selected for developing a scoring signature termed as m6Ascore. Elevated m6Ascore indicated worse survival for glioma patients under standard care, but showed enhanced response to immunotherapy. Moreover, we demonstrated that overexpression of FTO, a m6A demethylase, inhibited the expressions of m6A-related hub genes (PTX3, SPAG4), impaired glioma cell viability and reduced macrophage chemotaxis.</p><p><strong>Conclusion: </strong>This work develops an immune- and clinical-relevant m6A subtyping and a scoring model, which enhances our understanding of the role of m6A modification in regulating immune infiltration microenvironment in gliomas and helps to identify patients who are more likely to benefit from immunotherapy.</p>","PeriodicalId":8915,"journal":{"name":"BMC Medical Genomics","volume":"18 1","pages":"37"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12920-025-02104-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: m6A methylation modification is a new regulatory mechanism involved in tumorigenesis and tumor-immunity interaction. However, its impact on glioma immune microenvironment and clinical outcomes remains unclear.

Methods: Comprehensive expression profiles of 18 m6A regulators were used to identify molecular subtypes exhibiting distinct m6A modification patterns in 1673 glioma samples sourced from public datasets. A multi-genes signature was constructed for predicting clinical outcomes and response to immunotherapy in glioma patients. Immunohistochemistry and cellular experiments were performed for validation.

Results: Two m6A subtypes of gliomas were identified. The m6A-low-risk subtype was characterized by paucity of immune infiltrates; While the m6A-high-risk subtype had higher abundances of multiple immune cells including lymphocyte and macrophage as well as increased expression of PD-L1, corresponding to an immunosuppressive phenotype. The m6A-high-risk subtype had poorer survival than the m6A-low-risk subtype in both the glioblastoma and lower grade gliomas cohorts. Eight m6A-related hub genes of high prognostic significances were identified and selected for developing a scoring signature termed as m6Ascore. Elevated m6Ascore indicated worse survival for glioma patients under standard care, but showed enhanced response to immunotherapy. Moreover, we demonstrated that overexpression of FTO, a m6A demethylase, inhibited the expressions of m6A-related hub genes (PTX3, SPAG4), impaired glioma cell viability and reduced macrophage chemotaxis.

Conclusion: This work develops an immune- and clinical-relevant m6A subtyping and a scoring model, which enhances our understanding of the role of m6A modification in regulating immune infiltration microenvironment in gliomas and helps to identify patients who are more likely to benefit from immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Genomics
BMC Medical Genomics 医学-遗传学
CiteScore
3.90
自引率
0.00%
发文量
243
审稿时长
3.5 months
期刊介绍: BMC Medical Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of functional genomics, genome structure, genome-scale population genetics, epigenomics, proteomics, systems analysis, and pharmacogenomics in relation to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信