Treating White Spot Lesions and Non-Carious Cervical Lesions with Amelogenin Peptide-Based Hydrogel.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Erika Bauza Nowotny, Salony Jassar, Jin-Ho Phark, Janet Moradian-Oldak
{"title":"Treating White Spot Lesions and Non-Carious Cervical Lesions with Amelogenin Peptide-Based Hydrogel.","authors":"Erika Bauza Nowotny, Salony Jassar, Jin-Ho Phark, Janet Moradian-Oldak","doi":"10.3390/biomimetics10020120","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide-based biomimetic treatments have gained increased attention in the dental field due to their biocompatibility and minimally invasive qualities. These biomimetic approaches can replicate the native architecture of dental tissues, thus contributing to higher success rates and improved longevity of restorations. The aim of this study was first to examine the biocompatibility and stability of an amelogenin peptide-based chitosan hydrogel (P26-CS) against salivary enzymes. Second, we aimed to evaluate its efficacy in biomimetically repairing human dental lesions in situ. White spot lesions (WSLs) in enamel and non-carious cervical lesions (NCCLs) in dentin were artificially created. Chitosan (CS) improved peptide stability, while remineralization of enamel sections with P26-CS was not impeded by salivary enzymes. The peptide was not cytotoxic, irritating, or sensitizing. Fluorescently labeled P26-CS penetrated ~300 μm into the enamel of WSLs and ~100 μm into the dentin of NCCLs. After peptide treatment, quantitative light-induced fluorescence (QLF) and microcomputed tomography (μCT) indicated a gain in mineral density of WSLs. In NCCLs, scanning electron microscopy showed that the dentin was covered by a mineral layer of needle-shaped crystals. Our results show that the repair of artificial WSLs and NCCLs was achieved by P26 peptide-guided remineralization and demonstrate its potential to repair dental lesions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020120","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide-based biomimetic treatments have gained increased attention in the dental field due to their biocompatibility and minimally invasive qualities. These biomimetic approaches can replicate the native architecture of dental tissues, thus contributing to higher success rates and improved longevity of restorations. The aim of this study was first to examine the biocompatibility and stability of an amelogenin peptide-based chitosan hydrogel (P26-CS) against salivary enzymes. Second, we aimed to evaluate its efficacy in biomimetically repairing human dental lesions in situ. White spot lesions (WSLs) in enamel and non-carious cervical lesions (NCCLs) in dentin were artificially created. Chitosan (CS) improved peptide stability, while remineralization of enamel sections with P26-CS was not impeded by salivary enzymes. The peptide was not cytotoxic, irritating, or sensitizing. Fluorescently labeled P26-CS penetrated ~300 μm into the enamel of WSLs and ~100 μm into the dentin of NCCLs. After peptide treatment, quantitative light-induced fluorescence (QLF) and microcomputed tomography (μCT) indicated a gain in mineral density of WSLs. In NCCLs, scanning electron microscopy showed that the dentin was covered by a mineral layer of needle-shaped crystals. Our results show that the repair of artificial WSLs and NCCLs was achieved by P26 peptide-guided remineralization and demonstrate its potential to repair dental lesions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信