S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee
{"title":"Long Short-Term Memory-Enabled Electromyography-Controlled Adaptive Wearable Robotic Exoskeleton for Upper Arm Rehabilitation.","authors":"S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee","doi":"10.3390/biomimetics10020106","DOIUrl":null,"url":null,"abstract":"<p><p>Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (<i>p</i> = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (p = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.