Long Short-Term Memory-Enabled Electromyography-Controlled Adaptive Wearable Robotic Exoskeleton for Upper Arm Rehabilitation.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee
{"title":"Long Short-Term Memory-Enabled Electromyography-Controlled Adaptive Wearable Robotic Exoskeleton for Upper Arm Rehabilitation.","authors":"S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee","doi":"10.3390/biomimetics10020106","DOIUrl":null,"url":null,"abstract":"<p><p>Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (<i>p</i> = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (p = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信