Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data Collection in Complex Environments.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhengzhe Xiang, Fuli Ying, Xizi Xue, Xiaorui Peng, Yufei Zhang
{"title":"Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data Collection in Complex Environments.","authors":"Zhengzhe Xiang, Fuli Ying, Xizi Xue, Xiaorui Peng, Yufei Zhang","doi":"10.3390/biomimetics10020109","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of edge-computing technology, more computing tasks are moving from traditional cloud platforms to edge nodes. This shift imposes challenges on efficiently handling the substantial data generated at the edge, especially in extreme scenarios, where conventional data collection methods face limitations. UAVs have emerged as a promising solution for overcoming these challenges by facilitating data collection and transmission in various environments. However, existing UAV trajectory optimization algorithms often overlook the critical factor of the battery capacity, leading to potential mission failures or safety risks. In this paper, we propose a trajectory planning approach Hyperion that incorporates charging considerations and employs a greedy strategy for decision-making to optimize the trajectory length and energy consumption. By ensuring the UAV's ability to return to the charging station after data collection, our method enhances task reliability and UAV adaptability in complex environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of edge-computing technology, more computing tasks are moving from traditional cloud platforms to edge nodes. This shift imposes challenges on efficiently handling the substantial data generated at the edge, especially in extreme scenarios, where conventional data collection methods face limitations. UAVs have emerged as a promising solution for overcoming these challenges by facilitating data collection and transmission in various environments. However, existing UAV trajectory optimization algorithms often overlook the critical factor of the battery capacity, leading to potential mission failures or safety risks. In this paper, we propose a trajectory planning approach Hyperion that incorporates charging considerations and employs a greedy strategy for decision-making to optimize the trajectory length and energy consumption. By ensuring the UAV's ability to return to the charging station after data collection, our method enhances task reliability and UAV adaptability in complex environments.

复杂环境下可靠边缘数据采集的无人机轨迹规划。
随着边缘计算技术的快速发展,越来越多的计算任务从传统的云平台转移到边缘节点。这种转变对有效处理边缘生成的大量数据提出了挑战,特别是在极端情况下,传统的数据收集方法面临局限性。通过在各种环境中促进数据收集和传输,无人机已经成为克服这些挑战的有希望的解决方案。然而,现有的无人机弹道优化算法往往忽略了电池容量这一关键因素,导致潜在的任务失败或安全风险。在本文中,我们提出了一种考虑充电的轨迹规划方法Hyperion,并采用贪婪策略进行决策,以优化轨迹长度和能量消耗。通过保证无人机在采集数据后能够返回充电站,提高了任务可靠性和无人机在复杂环境下的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信